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Overview 
Guth’r inflationary Univene renario bar revolutionized our thinking 

about the very early Universe. The inflationary ecenario offera the posai- 
bility of explaining ” handful of vexy fundamental cosmological facts.-the 
homogeneity, isotropy, and tlatneaa of the Universe, the origin of density 
inhomogeneitiea and the origin of the baryon asymmetry, in terma of mi- 
crophyaical events which occurred early (t < 10-J’sec) in the history of the 
Universe. While Guth’a original model war fundamentally flawed, the variant 
baned on the alow-rollover trrnrition proposed by Linde, and Albrecht and 
Steinhardt (dubbed ‘new inflation’) appeam viable. Although old inflation 
and the earlieat modele of new inertion were based upon first order phase 
traneitiona associated with epontaneoue-symmetry breaking (SSB) of Grand 

Unified Theo& (GUTa), it now appeam that the inflationary transition is 
a much more generic phenomenon and that the intlationary transition that 
explainn the aforementioned purrlee might be aeaociated with one of a va- 
riety of early Univeree phenomena-includiig a 6mt or second order SSB 
phaee transition, the evolution of some scalar Reld to itr vacuum date or 
the compactification of additional diiensiona. For thie reaeon I have entikd 
these leckuru The Mationary Paradigm. While there are seved mod& 
which mccarfully implement the inflationary paradigm, none ia particularly 

,gy (July 19841, 
:e of the 

: 1985), 

l Summary of three lectures on inflation given at the Cargese 
Summer School on Fundamental Physics and Cosmology (July 1984), 
the Les Houches Summer School on The Architecture of the 
Fundamental Interactions at Short Distances (July-August 1985), 
and the UK Theory Summer Institute (St. Andrews, August 1985). 
To be published in the Proceedinqs of the Carqese School on 
Fundamental Physics and Cosmology, eds. J. Audouze and 
J. Tran Thanh Van (Editions Frontieres, Gif-Sur-Yvette, 1985). 
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compelling and all uem somewhat d Aoc. The common diituteful feature 
of sll the suczessfnl mod& iv the nwznlty of a small dimeDsio&m number 
in the model-usually in the form of a dlmetionlesv coupling of order IO-‘*. 
And of comae, all ingationuy wonariw rely upon the aanmption that vac- 
uum energy (or equivalently a ccumological term) was once dynamically very 
nignificaot, wherean today there tit* every evidence that it ia not (although 
we have DO undemtanding why it t not). I have divided my lectures into 
the following sections: Succa#a of the rtandard cosmology; Shortcominga of 
the rtandard ccumology; New inflation-the rlow-mllover transition; Scalar 
deld dynamica; Origin of density inhomogeneitier; Specific models, I. Interest- 
ing failureq Learmu learned-a pmCtiptio0 for rucceaaful intktion; Specific 
Modela, II. Two modeb that work; The InBationq paradigm; and Loose 
ends. 

The S-dud Comrmlogy md Iti Bucc*wa8 

The hot, big bang hzunology-the &cd standard cosmology, neatly accounts 

for the (Hubble) expanrian of the Univerm, the 2.7 K microwave background radiation 

(see Figs. 1,2), and thmugb primordlai nucleoaynthcais, the cosmic abundances of 

the light elements D and ‘ffe (&I@ in al1 likelihood, 5Hc and ‘Li Y swell; see Fig. 

3). The mat distant gW and QSO’a obverved to date have r&hilts in excess 

of 3-the current record holden are: for galaxies v = 3.2 (ref. 1) and QSO’s z = 3.8 

[ref. 2). The tight we observe from an object with redshift I = 3 left that object 

only 1-2 Byr after the bang. Obnewationr of even.the most distant galaxies and 

QSO’a are cokiitent with the standard counology, thereby testing it back to timea 

as early as 1 Byr (see, e.g., ref. 3). The surface of but scattering for the microwave 

background is the Univene at an age of a few x106 yn and temperature of about 

3000 K. Meanurement~ made OIL wavelengtbr from 0.05 cm to 30 cm indicate that it 

h consistent with being radiation from a blackbody of temperature 2.75 K f 0.05 K 

(see Fig. 1 and ref. 4). Messummsuta of the isotropy indicate that the temperature is 

uniform to a part in 1000 on angular de9 ranging from 1’ to MO’-to a part in 10’ 

after the dipole component la removed (we Fii. 2 and ref. 5). The obsewatioas of the 

microwave background kat the #tandud camology back to times u early an 100,000 

yn. According to the standard cosmology, wben the Universe wan 0.01 ~~-300 set 

old, correapon&mg to kmpsmtura of 10 bfeV-O.1 MA’, conditiona were right for 

the vynthec.L of light elementa. The predicted abundancea of D, ‘Be, ‘He, and ‘Ii 

are con&tent with their observed abundancea provided that the baryon-to-photon 

ratio is 

q z n,/n, = (4 - 7) x 1o-‘O 0) 

The concordance of theory and ohmrvatlon for D and ‘He L particularly compelling 
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Pk. &Big bang nucleoayntha’u pradictiona for the primordial abundancea of D, ‘He, 
‘Be, and ‘15. I’, = maas fraction of ‘He, shorn for N. = 2, 3, 4 light new 
trino speciar. Prenent observational data suggest: 0.23 -< Y, 5 0.26, (D/B), 2 
1 x IO-‘, ((D +’ Re)/ff], < IO-‘, and ('h/H), = (1.1 f 0.4) x lo-“. Concor- 
dance require q z (4 - 7) x lo- “‘. For further diilurion re ref. 6. 



evidence in #upport of the standard c~nm010gy a there ;ue 110 known contemporary 

atrophy&d rites which can simultaneously account for the primordial abundances 

of both thm isotopes (we ref. 6 for fortha discussion of primordial nucleosynthesis). 

lo sum, all the available evidence indicates that the standard cosmology provides 1~ 

accurate accounting of the evolution of the Universe from 0.01 set after the bang 

until today, some IS or L) Byr late-quite a remarkable achievement! 

1 will q ov briefly review the standard cwmology (more complete discussiona of 

the standard ccamology am &en in ref. 3). Throughant I will use high energy 
physica pnits, where R = k = c = 1. The following convemion facton may be useful. 

lGcV-’ = 0.197 x lo-%n 

lGeV-’ = 0.658 x LO-“‘ret 

l&V = 1.160 x 10’3K 

1GeV = 2.32 x lO”9cni” 

I& = 1.99 x lo”g z 1.2 x 10”‘baryona I ! 

lpc = 3.26fight - 9eor = 3.69 x lO”cm 

1Mpc = 3.09 x ld’cm 

GN = 6.673 x IO-‘cm3g-‘set-’ E rn;’ 

(ma = 1.22 x lO’%eV) 

On large ac&a (> 1OOhfpc) the Universe is isotropic and homogeneous, u 

evidenced by the uniformity of the 2.7 K backgmund radiation, the x-ray back- 

ground, and source counts of galaxies, md ao the standard cosmology is baed oo 

the maximally-symmetric Robertson-WaIker tine element 

ds’ = -dt’ + Ra(f)fdr’/(l - k?) + r’d.9’ + r’ain’Od#l (2) 

where ds’ is the square of the proper separation between two space-time events, k is 

the curvature signature (and can, by P auitable resaling of R, be set equal to _ 1, 0, or 

+I), and R(f) ia the cosmic scale factor. The expansion of the Universe is embodied 

in R(t)--as R(t) increws all proper (i.e., physical--as mevured by meter sticks) 

distances oclle with R(f). The coordinatea r, 8,and (p are comoviag coordinateq 

test particles initially at rest will have constant comoving coordinates. The distance 

between two objects comoving with the apm#ion, e.g., two galaxies, simply scales 

up with R(t). The momentum of any freely-pmpagating partiile decreases aa l/R(t), 

implying that the wavelength of P photon A o[ R(t), i.e., is redshifted by the expansion 

of the Universe 
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The coozdinats diiance at rhkb cOrntq effect@ become noticeable L Itl-‘/2, 

which comapn& to the phylicrl(01 propar) dirtamx 

%., = RWl-‘D (3) 

-which one mi@t call the cumtun radiru of the Univeme. Note that &.,. llso 

jut aala with the counic rule factor R(t). 

The evolution of the cosmic rule factor and of the strew energy in the Universe 

w gmmmd by the Fticdmann equation*: 

Ha s (i/R)’ = 61Gpf3 - k/R= (4) 

d(pR’) = -pd( R’) (5) 

where p L the total energy density and p ia the isotropic pressure. (The asumption 

of iwtropy and homogeneity require that the strws-energy tenor take on the perfect 

duid form: Tt = diagonrJ(-p, p, p. p).] Becaw p cc R-” (n = 3 for matter, 

I) = 4 for radiation) it follow from l%@.(4) that model Univcnea withy t < 0 expand 

forever, wbik thorn Hith k > 0 muit neauriiy recohp~. 

The expan&n rate R (&o known u the Bubble parameter) sets the character- 

Ltic timacale for the growth of R(t): R- ’ k the e-folding time for R. The present 

v-due of If ‘I; 

E = IOOA km *cc-‘Mpc; 

whire the obeervation~ data strongly suggest that 0.4 5 A 5 1 (ref. 7). 

The sign of the spatial curvature L-and the ultimate fate of the Universe can 

be determined from meamrement~ of p and E 

k/H’R’ = pf(3~/3rC) - 1 

SO-1 
(6) 

rhae 0 = p/p,& and bra = l.55ha x 10-aOgcm-S = 1.05 x 10’hacVcm-‘. The 

curnttur tats, ik, L tdhd ton by 

(&.“/R-‘)’ = p/w - 111 (7) 

A reliable snd definitive determination of fl haa thus far cluded comnologists. 

Bawd upon the hrdnolu matter in the Univeme (which is relatively easy to keep 

track of) we can set a lower bound to 0 

n z nLuu = 0.01 
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Based on dynamical techniquea-which aU basically involve Kepler’s third law in 

one guuiw or another, the observational data seem to indicate that the material that 

clwkn wfth viaibls galas&a on #ales 5 10-30 hfpc accounts for 

l-LJ& z 0.1 - 0.3 

Although fl can, in principle, be determined by meaearcments of the deceleration 

p-eter po 
90 = -(~lR)lH2, 

= n(l+ 3PlP)/2, 
(0) 

the difficulty of reliably determining 40 probably only restrick II to be less than a 

few’. [For L more thorough dirussion of the amount of matter in the Uuiveme see 

ref. a.1 

The heat upper limit to tI comes from the age of the Universe. The age of tbr 

Univens is related to the Hubbls time If-’ by 

t. = f(ny-1 (9) 
whcm /(fl) ir a monotonically decreasing function of #I; I(O) = 1 and /(I) = 2/3 

for a matter-dominated Univeme and l/2 for a radiation-dominated Universe. The 

dating of the oldest #tam and the elements strongly suggest that the Universe is at 

least 10 Byr old-the best estimate being around 15 Byr old’. Ram Eqo(9) and 

f. 1 tlolOEyr it follow8 that t:,tIj’ 2 Clh’. The function nf ia monotonically 

increasing and bounded above by x=/4, implying that independent of h, flhl 5 

2.5/f&,. Requiring h > 0.4 and tlo 2 I, it followa that nh’ 5 1.1 (see Fig. 4). 

The energy density of the Universe quite naturally splits up into that COW 

tribukd by rahtivbtic particlea-today the microwave photons and cosmic neutrino 

backgrounda, and that contributed by non-relativistic particles-bayous and what- 

ever &el The energy density contributed by non-relativistic particles decreases as 

R(t)-‘-just due to the incrrue in the proper volume of the Universe, while that 

of relativltic particles varier Y R(f)-‘-the additional factor of R being due to the 

fact that tb momenk (and hence energies) of relativistic particles are redshifted by 

the expu~llon. [Both of these resulk follow directly from Eqn(S).] 

Thr l rr~y drnrity contributed by nlativhtic particle8 at temperature T is 

pi? = g.(T)$’ 00) 

where g.(T) counts the effective number of degreea of freedom (weighted by their 

kmperatum) of all the relativiatlc particle specia (those with m Q: T): 

g.(T) = c gsCC/T)’ + 110 c gr(Ti/T)‘, (11) 
Bon F*rmni 

- 
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Fig. I-The age of a matter-dominated, A = 0 Univem in Bubble units (E 1 E 
If&,) a~ L function of n (upper figure) ad the functions nfa(n) ad IV? (lorer fig 
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here 7’. in the tanparature of the npaiea i. 

Today the snar~y density contributed by relativistic particles (photons and three 

neuttino IpaIr) ia very mau (0. = 3.36) 

fl, svha e 4 x lo-‘(T/2.7K)’ 

Bowever, beuws PR a R-‘, while PNR ox R-‘, at early times the energy dmsity 

contributed by mlativintic particlea dominated that of non-relativistic particles. To 

be apecitlc, thr Univsne wu radiation-dominated for 

t 5 tc* 14 x lo’Oa,(nA’)-‘(T/2.‘IK)*, 

R 5 Rs4 II 4 x IO-‘R,*,(nA’)-‘(T/Z.‘IK)‘, 

T 2 TIQ = b.6eV0h1(2.7K/T)J. 

Thenfore, at very early timu Eqn(4) rimplifiea to 

Ii = (R/R) = (Itig./lS)‘l=~/m~, 

= I.66gf~2T’fm~ 
(W 

[Note nines the curvature term varier aa R(t)-’ it too is negligible compared 

to tha energy density in relrtiviatic partick%) For reference, g.(fewMcV) = 

10.76 (7, e*, 3~0); g.(fewlCNJGeV) = 110 (7, W*Z, g gluons, 3 families of quarks 

and leptonl, and 1 Higgr doublet). 

So long u thermal equilibrium ‘u maintained, the second fiedmann equation, 

Eqn(5), implia that the entropy per comaving volume, S o( &‘. remains constant. 

Hen l ia the entropy denlity which h dominated by the contribution from relativistic 

particle, and I# 

L = (p + p)/T e (Zr=/lS)g.T’. 03) 

The entropy den&y ia just proportional to the number density of relativistic particles. 

today the wttmpy den&y b just 7.04 times the number density of photons. The 

constancy of S m- that , QI: R-S, or that the ratio of any number density to I is 

just prqmrtionaf to the number of that species per comoving volume. The baryon 

number-tc-entropy ratio b 

ful,l~ = W7)fh 

and mince today the number den&y of b,qcoa ic.much greater than that of ao- 

tibuyom, thii ratio h &o the net baryon number per comoving volume-which is 

conrsrved 10 long aa the rate of buyon-number non-co-ing reactiona t small. 
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The conrtancy of S implia that 

T a g.(T)-‘/‘R(t)-‘. (14) 

Wbenevor g. in am&at, thii malnr that T cc R(t)-‘. Together with Eqn(l2) thin 

gl”U 

R(i) = R(:o)(W”a, 

f c 1/28-l = 0.3g;%n&T’, 

s 2.4 x IO-‘see g;‘la(T/GeV)-a. 

finally, let me mention one more important feature of the standard cosmology, 

the e&ace of particle borisons. In the Andud cosmology the distance a pho- 

ton could have traveled since the bang is finite, meaning that at a given epoch the 

Univene ia comprised of many causally-ditinct domains. Photona travel on paths 

chancter~ed by da’ = 0; for simplicity and without lose of generality consider a 

trajectoy with dp = dB = 0. The coordinate distance traversed by a photon since 

‘the bang’ L 

I 

L 
dt’/R(f’) 

0 
which cotiapondr to the phyical distance (measured at time 1) 

d&t) = R(t) /o’ dt’/R(t’). (1‘3) 

lf R(t) P 1’ and n < 1, then the horizon distance dn(t) is finite and up to a factor 

of order unity = t LL 8-l. 

Note that even if dN(t) divergea (e.g., if R(t) cc 1” with n > I), the Hubble radius 

If-’ rtill aeta the scale of the ‘Phyaia Horizon’. Thin ia because all physical lengths 

scale up with R(t), which e-folds in a time ff- I, thereby implying that a coherent 

m&ophysic.af procea can only operate over P time interval of order 61-l. Thus, at a 

given epoch causally-coherent microphynical proccssea can only operate OIL distance8 

5 the Bubble radius, If-‘. 

During the radiation-dominated en n = l/2 and du(t) = St; the entropy and 
baryon number within the horiron at l given time are easily computed: 

Sa0.q = (4r/3)l’s, 

= 0.05g;‘~a(m~/T)‘, 

N~~-norr = (ns/s)snon, 

= IO-“(rry/T)‘, 

= IO-=Ibf,(T/hfeV)-=. 

7 



We can compare thew numhen to the entropy aad batyon number contained witbiu 

the praent horiaon volume: 
S” z2 lo’*, 

Nev” 10 7. . 

Evidently, in the standard cosmology the comoving volume which corresponds to the 

part of the Uoivens which b prucntly observable contained many, many horizon 

volums~ at early tima. This is an important point to which we shall return shortly. 

Shortcomlngn of the Standard Comology 

The standard cosmology in very successful-it provides us with a reliable frame 

work for describing the history of the Universe aa early as 10-l set after the bang 

(when the temperature was about 10 MeV) and perhaps an early as lo-” set after 

the bang (see Fig. 5). [There is nothing in our present understanding of physics that 

would indicate that it isincorrect toextrapolate the standard cosn~ology back to timea 

u early u 10-O rec-quarka and leptons are point-like particles and their known 

interaction8 should remain ‘weak’ up to energies aa high a~ lOI GeV-justifying the 

dilute gu approximation made in writing p, 0: 2”. However, at times earlier than 

10-O l ec, corresponding to temperaturea greater than 10” GeV, quantum correc- 

tiona to genenl relativity-a clan&al theory, should become very significant.] In 

rum, the standard cosmology i# a great achievement. 

However, it ia not without its ah&comings. There are a handful of very impor- 

taut and fundamental cosmological facts which, while it can accommodate, it in no 

way elucidatea. I will briefly review these puzzling facts. 

(i-ii) Large-acale Lotropy and Homogeneity 

The observable Universe (d s 8-l z lO”cm E 3000 Mpc) is to a high degree 

of pm&ion iaotmpic and homogeneous on the largest scales, say > 100Mpc. (Of 

count, our knowledge of the Univene outaide our past light cone is very limited; 

MC ref. 10.1 The beat evidence for the isotropy and homogeneity is provided by 

the uniformity of the cosmic background temperature (see Fig. 2): (6T/T) < IO-’ 

(IO-’ if the dipole anisotropy ia interpreted as being due to our motion relative to 

the counic rest frame). Large-scale density inhomogeneitia or anisotropic expansion 

would result in temperature fluctuationa of comparable magnitude (see refs. 1 I, 12). 

The nmoothoear of the observed Universe in puEz!ing if one wishes to understand 
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it a being due to causal, micmphyaicd pmc- which opented during the early 

ritory of the Universe. Our Hubble volume today contains an entropy of about 

10“. At decoupling (f z 6 x 10”(flha)-‘~‘,ec, T z l/3&), the last epoch when 

matter ad radiation were know to be interacting vigorously, the entropy within the 

horisoo wu 0x11~ about 8 x LO’“; that is, the comoving volume which contains the 

pmntly-obwrnble Univeme, then was comprised of about 2 x 10’ caus&diitinct 

regiona. How is it that they came to be homogeneous? Put another way, the particle 

hariron at decoupling only subtends aa angle of about l/2* on the sky today-how 

h it thri the cosmic background temper&n is so uniform on angular scales much 

greater than thir? 

The rtandard cee.molcgy can accommodate these facto-after all the FRW cw 

mology is exactly isotropic and homogeneous, but at the expense of very special 

initial data. Collim and Hawking Is have shown that the set of initial data which 

evolva to a Universe which globally ia aa smooth a~ ours has measure zero. 

(iii) SmaIl-scale Inhomogeneity 
! ! 

As any real astronomer will gladly testify, the Universe is very lumpy-stars, 

galaxies, cluatem of galaxies, supe~lusters, etc. Today, the density contrast cm the 

aale of galtica in: &p/p cz ld. The fact that the microwave background radiation 

i very uniform even on very small angular scales (*: 1’) indicata that the Universe 

wan smooth even on the scale of galaxies at decoupling. [The relationship between 

the angle on the &y and maa contained within the corrmponding length scale at 

decoupling in: B E 1’(M/10”M~)‘~sfl~‘~5V~J.~ On small angular scales: dT/T CI 

c(dp/p)&., when the numerical con&ant c z lo-’ - LO-” [see ref. 12 for further 

detaila.] Wheace came the structure which today is so conspicuous? 

Once matter decouples from the radiation and is free of the pressure support 

provided by the radiation, any density inhomogeneities present will grow via the 

Jean (or gravitational in&ability)-in the linear regime, 6p/p cs R(t). [If the mass 

den&y al the Univenc ir dominated by a collisionless particle species, e.g., a light, 

relic nrntrino npeciea or relic uions, density perturbations in these particles can begin 

to grow u soon Y the Univenc becomes matter-dominated.) In order to account 

for the pnlant structure, dewity perturbations of amplitude few x10-’ or so at 

decoupling an necessary on the scale of gdaxies. The standard cosmology sheds no 

light an to the origin or nature (spectrum and typtadiabatic or isothermal) of the 

primordial density perturbations no crucial for understanding the structure observed 

in the Universe today. [For a review of thifonnation of structure in the Universe 

according to the gravitational instability picture, see ref. 14.) 

9 



(iv) fitnem (or Oldneu) of the Univene 

The obwvational data l uggat that 

0.01 < n < few. 

Cl ir A&d &both the expansion rate of the Univeme and the cunaturr radius of 

the Uni-: 

r-l = ercp/siP I Pair/If’, (17) 

IfI - II= (R-‘/R&2, (16) 

The fact that fl L not too different from unity today implia that the preent expan- 

#ion rate in clue to the critical expuuion rate and that the curvature rirdius of the 

Univena i comparable to or larger than the Hubble radius. As the Universe expands 

fl dou not remain conhnt, but evolves away from 1 

l-l = l/(1 -z(t)), (19) 

=(a‘= (VRV(~~GP/3), (20) 

i 

R(f)’ radiation -dominated 
o( 

R(t) matter - dominated 

That Q ia *iIf of order unity meaw that at early times it wu equal to 1 to P very 

high degree bf precision: 

)f-l(lo-‘Lc) - 11 z o(lo-ao), 

)tl(lrr) - 1) ” O(lo-‘~). 

Thin in turn implin that at early times the expansion rate wan qud to the critical 

rate to a bigh degree of preci&an and that the curvature of the Universe WM much, 

much greater than the Hubble radius. Why was this so? If it were not, i.e., suppose 

that 1(k/R’)/(8rGp/3)1 zz O(1) at t = 10-4srec, then the Universe would have 

collapsed after a few Planck times (k > 0) or would have quickly become curvature- 

dominated, (k < 0), in which cane R(f) o( t and t(T = 34 = 300 yrs! 

The ao-called flatma problem hu -metim- been obscured by the fact that it 

ia conventional to racale R(t) m that k = -1, 0, or 41, making it seem ra though 

there are but three FRW model. However, that clearly ia not the c-; there are 

an infinity of models, specified by the curvature radius J&.,. = R(f)(kI-‘la, at some 

given epoch, say the planck epoch. Our model corresponds to one with a curvature 

radiru that exe& itn initial Bubble radiru by 30 orden-of-magnitude. Again, this 

10 



fact can be accommodated by FRW model, but the extreme Battneaa of our Universe 

L in no way aplaioed by the rtandard coemology. 

(v) Buyon Number of the Universe 

Them t ample evidence (sea ref. 15) for the dearth of antimatter in the observable 

Universe. That fact together with the bayon-twphoton ratio (7 z 4 - ‘I x 10-1~) 

meuu that our Univene is endowed with a net baryon number, quantified by the 

buyon number-teentropy ratio 

ns/s = (6 - 10) x IO-“, 

which in the abeeace of baryon number non-conserving interactions or significant 

entropy production la proportional to the constant net baryon number per comoving 

volume which the Univene hu always paseared. Until dve or eo yesra ago this very 

fundamental number was without explanation. Of course it is now known that in the 

prernce of interactiona that violate B, C, and CP a net baryon asymmetry will evolve 

dynamically. Of course, rucb interactiona are predicted by Grand Unified Theories 

(or GUTa) and ‘baryogencsis’ is one of the great triumphs of the marriage of grand 

unification and cosmology. [See ref. 16 for P review of grand unification.] If the 

baryogenerb idea is correct, then the baryon asymmetry of the Uuiverse is aubjjwt 

to calculation just aa the primordial Helium abundance is. Although the idea is very 

attractive and certainly appean to be qualitatively correct, a precise calculation of 

the baryon number-to-entropy ratio cannot be performed until The Grand Unified 

Theory ir known. [Bxyogeneaia is reviewed in ref. 17.1 

(vi) The Monopole Problem 

If the great nuccec.a of the marriage of GUTs and cosmology is baryogeneais, then 

the peat disappointment ie ‘the monopole problem’. ‘t Hooft-Polyakov monop~les’~ 

are a generic prediction of GUT*. In the standard cosmology (nod for the simplest 

GUTs) monopola are gmolely overproduced during the GUT synunrtry-breaking 

trannlitioa, 10 much m that the Universe would reach its present temperature of 

3K at thr very tender age of 30,000 yn! /For a detailed discussion of the monopole 

problem, see refe. 19, 20.1 Although the monopole problem initially eeemed to be 

a levers blow to the loner Space/Outer Space connection, as it has turned out it 

provided us with a valuable piece of information about physics at energies of order 

10” GeV and the Univeme at times 18 early as IO-” set-the atyldard cosmology 

and the rimplut GUTr are d&itely incompatible! In fact, it was the search for 

a solution to the monopolc problem which in the end led Guth to come upon the 

inEati0na-y tiniverse acer~ario~‘~~~. _ - 
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(vii) The Smallness of the Coemologicai Constant 

With the pmeible exception of eupemymmetry/eupergavity (SUSY/SLJCR) and 

superstring theories, the absolute scale of the K&I potential V(4) is not specified 

(here 4 reprceentr the ecafar fields in the theory, be they fundamental or composite). 

A constant term in the scalar potential is equivalence to a cosmological term (the 

scalar potential contributea a term Vg,, to the strata energy of the Universe”). 

At low temperatures (say temperatures below any eccJe of spontaneous symmetry- 

breaking) the constant term in the potential receivea contributions from all the stagea 

of SSB-chiral eymmcty breaking, l lectroweak SSB, GUT SSB, etc. The observed 

expansion nte of the Universe (B = 1M)h km see-‘Mpc-‘) limits the total energy 

density of the Universe to be 

pro* < O( IO-“CeV’). 

Making the seemingly very reasonable rsaumption that all stress energy self-gravitates 

(which is dictated by the eq&valeence principle) it follows that the vacuum energy of 

our SU(3) x U(1) vacuum must be les than IO-‘%eY*. Compare this to the scale of 

the various contribution8 to the scalar potential: O(M’) for physics associated with 

a aymmetty breaking vale of M 

f IO-‘= M=W$+ 

kda”fM’ 5 P202IM’ 5 I lo-‘oa hi = 1O”GcV 

IO-” M = 3OOGcV 

I lo-‘@ M=IGeV 

At present there is no explanation for the vanishingly small value of the energy 

density of our very unsymmetrical vacuum. It is easy to speculate that a fundamental 

understanding of the emallneca of the cwmological constant will likely involve an 

intimate link between gmvity and quantum field theory. 

Today we can be certain the vacuum energy is small and plays a minor role in 

the dynunice of the expansion of the Universe (compared to the potential role that it 

could play). If we accept this M an empirical determination of the absolute scale of 

the ecllar potential V(S), then it follows that the energy density -iaM with an 

expectation value of 4 near zero is enormous-of order M’ (see Fig. 6) and therefore 

could have played an important role in the dynamics of the very early Universe. 

Accepting this empitied detcrminotion of the sero of vacuum energy--which is a 

very great leap of faith, is the starting point for inflation. In fact, the rest of the 

journey is downhill. 
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V(#l 
b-+ “[my. 

Pig. &In gauge theories the ncuum energy is a function of one &more scalar 
fields (here denoted aa 4); however. the absolute energy scale is not met. Vacuum 
energy behaves like a ccemoldgical term; the preaeot expansion rate of the Univeme 
con&aim the value of the vacuum energy today to be 5 10-aGeV4. 

“,I01 “,(+I “,I#) 

Pig. ‘I-The finite temperature effective potential ae a function of T (schematic). 
The Universe is usually rssumed to start oat in the high temperature, symmetric 
minimum (4 = 0) of the pokntial and must eventually evolve to the low temperature, 
asymmetric minimum (4 = u). The evoluti0n.d) from 4 = 0 to 0 = Q can prove to 
be very interesting---u in the case of an inflationary traneition. 

-lk- 



N.w kSotIon-The Skw-rdhU ‘lhndtb 

The b& Mu of the inaationary Univeme scenario in that there wu ao epoch 

when t& vscuum energy deoeity dominated the energy density of the Universe. Dur- 

ing tbfa epoch p zz V E ax&ant, md thee R(t) grow. exponentially (a erp(Hi)), 

allowing a mull, cauaaliy-coherent region (initial eise 5 H-‘) to grow to a sire which 

l ncompwr the don which eventually becomea our preeently-observable Universe. 

In GuthC original ecsnuioaa, this l ptcb occurred while the Univene was tnpped 

in the false (0 = 0) vacuum during a l tmngly, first-order phase transition. Unfortu- 

nately, in modele which inflated enough (i.e., underwent eu5cient exponential expan- 

eion) the Uqiveme never made P ‘gnrrful return’ to the usual radiation-dominated 

FRW ~oemolo~‘~. Rather than diecwring the original model and its ahortcominge 

in detail, I will inrtsad focus on the variant, dubbed ‘new infiation’, proposed indc 

pendently by Lindaa and Albrecht and Steinhudt’e. In this eccoario, the vacuum- 

dominated, inflrtionuy epoch occura while the region of the Universe in question ie 

slowly, but inevitably, evolving toward the true, SSB vacuum. Rather than conaid- 

ering rpeciflc modeb in thii l ecfion, I will try to diecusl new inflation in the most 

general conkxt. For the moment I will however assume that the epoch of in&&ion 

ie aamciated with l brat-order, SSB phw transition, and that the Universe is in 

thermal equilibrium before the transition. As we shall see later new intlation in more 

general thv these auumptions. But for definiteness (and for historical reasons), let 

me byin ti makin these aaeumptiona. 

Coluider P SSB pbaee transition characterired by an energy scale M. For 

T 2 2’. r O(M) the symmetric (4 = 0) vacuum ia favored, i.e., 4 = 0 in the global 

minimum of the finite temperature effective potential VT(#) (=free energy density). 

Ae T appmacbee T, a second minimum develops at 4 = 0, and at T = !I’,, the two 

minima are degenerate. At temperatures below T, the SSB (0 = u) minimum is 

the global minimum of V=(b) (see Fig. 7). Bowever, the Universe doa not instantly 

m&a thr tnzuiticm from 4 = 0 to 4 = CT; the details and time required are a question 

of dynaaja. [The scalar field 0 ie the order parameter for the SSB transition under 

dfecprlorr, Lo the spirit of genemlity # might be a gauge singlet field or might have 

nontrivial transformation propertier under the gauge group, potibly even reepon- 

sible for the SSB of the GUT.j Once the temperature of the Univene drops below 

T, z O(M), the potential energy associated with 0 being far from the minimum of 

itn potential, V E V(0) = M’, dominatea the energy density in radiation (p, < T,‘), 

and cauee the Univetae to expand exponentially. During this exponential expansion 

phw (known Y P desitter phase) the temperature of the Universe decreasea expo- 
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nentially causing the Universe to supercool. The exponential expansion continues 80 

long u 4 ia far from ite SSB value. Now let’s focus on the evolution of 4. 

Amming a barrier uista between the false and true vacua, thermal tluctua:ioos 

and/or quantum tunneling must take 0 acrcm the barrier. The dynamics of this 

proceu determine when and how the process occurn (bubble formation, spinodal 

decomposition, etc.) and the value of 0 after the barrier is penetrated. If the action 

for bubble nucleation remains Izrge, Sb > 1, then the barrier will be overcome by 

the nucleation of Coleman-deL.ucci= bubbles”; OD the other hand if the action for 

bubble nucleation becoma of order unity, then the Universe will undergo 8pinodz.l 

decomposition, and irregularly-shaped fluctuation regions will form (see Fig. 8; for 

a more de&d discussion of the barrier penetration process see refs. 27, 28). For 

dcfiniteneea euppoee that the barrier is overcome when the temperature is TM, and 

that after the burier in penetrated the vAue of # is 40. From this point the journey 

to the true vacuum is downhill (literally). For the moment let us assume that the 

evolution of 0 ia adequtely ducribed by semi-classicA quatious of motion: 

J+3ff$i+f-~+V=o, (21) 

where # haa been normafired e.o that its kinetic term in the Lagrangian is 1/28,4a’#, 

md prime indiutu a derivative with respect to #. The subscript T on V has been 

dropped; for T a Tr the temper&ore dependence of VT can be neglected and the zero 

tempenture potential (z V) can be used. The 3H$ term acts like a frictional force, 

and ariles beerule the expanrion of the Universe ‘redshifts away’ the kinetic euerw 

of ~(CZ R-‘). The rd term accounts for particle creation due to the time-variation 

of #[refs. 20, 301. The quantity r is determined by Ibe particles which couple to 4 

and the strength with which they couple (r-’ cz lifetime of a 4 particle). AS usual, 

the upanaion rate tl ir determined by the energy density of the Univene: 

Ii= = 0rGpf3, (22) 

4 = vi2 + V(4) + 6%. (23) 

wham p, repreaenb the energy den&y in radiation produced by the time variation 

of 4. [For Tu.v a T, the ortginat thermal component makes a negligible contribution 

to p.) The evolution of p, ie given by 

$. + I&. = I-P, 

where the I’# term accounts for particle creation by 0. 
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Pig. 84 the tunneling action is large (S > I), barrier penetration will proc+ via 
bubble nucleation, while in the caee that it becomar emrll (S z O(l)), the Unwene 
will fragment into irregularly-shaped Euctuation regions. The very-large scale (scale 
B bubble or Buctuation region) structure of the Universe is determined by whether 
9 z O(l)-in which case the Universe in comprised of irregularly-shaped domains, 
or S > 0( I)-in which case the Universe is comprised of isolated bubbles. 
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In writing Eqns.(Zl-24) I have implicitly assumed that 6 in spatiaIly homogt 

meow.. lo y)ma aoaIl region (inside a bubble or a Buctoation region) this will be a 

good appnadmation. The aire of this smooth region wiU turn out to be unimportant; 

take it to be of order the ‘physics horison’, H-‘+ertainly, it is not likely to be 

luger. Now follow the evolution of 4 within the Frau, smooth patch of size tl-‘. 

If V(#) Ia sufficiently Bat lomeahere between 4 = o. and 4 = b, then 4 will 

evolve very rlorly in that region; md the motion of 4 will be ‘friction-dominated’ so 

that 3Ri z -V’ (in the slow growth phase particle creation is not important”). If 

V ia kiently flat, then the time required for # to transverse the Bat region cao be 

long compared to the upannsion timude R-‘, for definiteness say, 5, = lOOH-‘. 

During thie Aw growth phive p z V(#) = V(# = 0); both p. and l/2$ are a: V(O). 

The expansion rata JY is then jut 

B = (t3rV(0)/3m$)‘la 

= O(~/%tL 
(25) 

where V(0) * auumed to he of order M l . While 61 z constant, R grows exponen- 

tially: R Q crp(R1); for r, = lOOR-‘, R expands by a factor of e”“’ during the slow 

rolling period, anod the physical nise of the smooth region increases to e’ODR-‘. 

A# the pot&M nteepcnr, the evolution of 4 quickens. Near 4 = o, 6 oscil- 

latea around the SSB minimum with frequency m* = m: z V”(o) z O(W) > 

R’ = M’/m$. Aa 0 oscillates about 4 = o ita motion ia damped both by particle 

creation rod the upaoaion of the IJaiveme. If I’-’ < H-‘, then coherent &Id en- 

ergy density (V + l/2$) ia converted into radiation in less thao an expansion time 

(A~RH = r-l), and the patch L reheated to a temperature T II O(M)-the vacuum 

energy is eBiciently converted into radiation (‘good reheating’). On the other hand, 

if I’-’ > H-‘, then 4 continua to oscillate and the coherent field energy redshifts 

away with the apmaion: (V + I/2& o[ R-‘-the coherent energy behaves like 

non-relativistic matter. Eventually, when 1 z I’-’ the energy in radiation begins to 

dominate that in coherent field oaciUrtions, and the patch is reheated to a temper- 

aum T = (r/Bp’M z (r-1 ‘I1 a M (‘poor reheating’). The evolution of 4 is 

rummuired thematically in Fig. 0. In the next a&ion I will diiosa the scalar field 

evolution in more detail. 

For the following discussion let 08 aeaume ‘good reheating’ (r B 8). After 

reheating the patch baa a phynicaI sire e ‘OOH-’ (- 1O”cm for M z lCJ%eV), is at 

a temperature of order M, and in the approximation that 4 was initially constant 

throughout the patch, the patch io exactly rmooth. From this point forward the 
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-ion l volvm like a ridiation-dominated FRW model. HOW have the cosmological 

wn”ndNnm been ‘explained’? 

Fint, th Aomogmeity and irofmpy, our observable Universe today (E 1O”cm) 

had P pbyriulriesof about IOcm (= 1fI”cm x 3K/lO’eGeV) when T was lO”GeV- 

thu it tiu weU within one of the lmooth regiona produced by the inEationary epoch. 

Put another way, inflation bar resulted in a amooth patch which contains an entropy 

of order (lO“~m)~ x (1O”GeV)’ L- lOIs’, which is much, much greater than that 

within the pruently-observed Univeme (E IO‘*). Before intlatioo that same volume 

contained only avery rmall amount ofentropy, about (10-ascm)J(10’4GcV)’ z 10”. 

The key to i&&on then L the highly non-adiabatic event of reheating (see Fig. 10). 

Of course, on the very largest wales (> 102’cm) the Universe is far from being 

homogeoeoua, conairting of many disjoint bubbles or fluctuation regions (see Fig. 8). 

The Univene’a very large scale ccumography is discussed in more detail in ref. 33. 

Since we have mumed that # in spatially constant within the bubble or Buctu- 

ation region, after reheating the patch in question is precisely uniform, and at this 

mtage tL inAomogcneity puafe hu not been solved, although inflation haa provided 

l smooth manifold on which adl Euctuations can be impressed. Due to deSitter 

‘pace produced quantum Buctuatioon in 4, 4 is not exactly uniform even in a small 

patch. Later, I will diicurr the dendty inhomogeneities that result fmnl the quwbxu 

Buctuatiooa in 4. 
TAs fitnrrr pudc involvea the amallnesa of the ratio of the curvhne tern1 to 

the energy den&y term. Thii ratio ia exponentially smaller after inflation: I.,<., cz 

e-aWzbr~on mince the energy denrity before and after inllation is O(M’), while k/R’ 

hu uponeatially decreased (by a factor of c 2oo). Since the ratio I is reset to an 

exponentially #mall value, the inhtionazy scenario predicts that today D should be 

1 f 0(10-B’=*). 

If the Univeme in reheated to a temperature of order M, a baryon symmetry can 

evolve in the usual way, although the quantitative details may be slightly different”. 

If the Unlveme L not &ciently reheated (TRY a: M), it may be possible for n~/s 

to be produced directly in the decay of the coherent Beld osciUations29-3’ (which 

brhavr jud Uke Nil 4 particlee); thie possibility will be diicuesed later. In my case, 

it ia absolutely neceaary to have baryogeneaia occur after reheating since say bayou 

number (or any other quantum number) present before inflation is diluted by a factor 

of (hf/?‘ys)” ezp(3Hr+)-the factor by which the total eotropy increases. Note that 

if C, CP are violated l pontaneoualy, then c (and n~/s) could have a different sign in 

different prtchee-leading to a Univeme which on the very largest scales (> c“‘~H-‘) 
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STANDARD COSMOLOGY 
R,T 

(ADIABATIC (RT = cons?) 

FACTOR 

1022 10% TODAY 

R T INFLATIONARY COSMOLOGY 

t .- T 
IO" 
GeV 

3K 

REHEATING, RT 

BY FACTOR OF 10 

16% 10-$$ 16?&. TODAY 

-- ST0 COSMOLOGY - 

INFLATION 

Pig. lO-Evolution of the scale factor R and temperature T of the Universe ia the 
standard cosmology and in the inflationuy cosmolog)r. The ataadard cxzemo& b 
alwayr adiabatic (RT = coast), while the inliatimwy cwmology undergoes a highly, 
non-adiabatic event (reheating) afkr which it is adiabatic. 



k byron r)tmmetric. 

Siou the patch (hat otlr obrcmbk Univenc lies within vu once (at the begin- 

ning of LnflJloa) auully-coherent, the Eii (ield could have been aligned tbrougb- 

out the patch (indeed, tbii b the lowest energy configuration), aad thus there in likely 

to be 5 1 monopole within the entire patch which was produced u a topological de 

feet. 1Ixc #ut al monopolcr which occun in the dandud cnamology doa not occur. 

(The production of other topological defecec* (ouch aa domain walls, etc.) is avoided 

for rimihr rewna.] Some monopolcn will be produced after reheating in rare, very 

energetic particle collkionr ‘-. The number produced in both exponentially small 

and exponentially uncertain. [In dinssing the resolution of the monopole problem I 

am tacitly wming that the SSB of the GUT is occurring during the SSB transition 

in question, or that it hu already occurred in WI earlier SSB transition; if not then 

one bu to worry about the monopoles produced in the subsequent GUT transition.] 

Although monopale production ia intrinsically small in inflationary models, the WI- 

certdntia in the number of moaopolu produced are exponential rbd of course, it 

i# dno pouiblc that monopola might be produced an topological defects in a mbse- 

qaeot phase transitions’ (although it may be difficult to arrange that they not be 

overproduced). 

Finally, the inflationary wanrio sheds DO light upon fhc cosmdogicd conatk 

pnzde. Although it can potentially ruccessfully resolve alI of the other puula in my 

list, inflation t, in Y)LW KIN, a houv of cards built upon the cosmological constant 

pluurle. 

Bedu Field Dynrmlcs 

The evolution of the scalar 6cld 4 i key to onderatanding new inflation. In this 

section I will focw on the err&cluical dpamirs of 4. Lakr, I will return to the 

qua&a of the nlidity of the rcmi-clan&al approach. Much of what I will diacusn 

ber.irwwmdiamomdctailinref... 

Consider a ac.dar field with fagragian density given by 

E = +,*av -V(O). 

For now I will ignore the interactions that # must necessarily have with other fields 

in the theory. As it will turn oat they must be weak for inflation to work, no that 
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tbii ammption i# a reaonable one. The dmd+ooergy tensor for this field ia then 

T’v = -W&4 - L9.w (37) 

Amming that in the region of interest 4 i# apatillly-comtant, T,,,, takes on the 

perfect Ouid form with energy denity and pmmue given by 

P = iis + V(O), cw 

P = ;i2 - V(4), (29) 

In the pruence of spatial variaticm in # both the pm~ure and energy density pick 

an additional km, !(V+)‘. INote, once intlattion begina any inhomogeneiti.s in 4 

are redabifted away hy the upmsioo-all l prtial modes with physical wavelengths 

rmaller than 61-l decay u R-l.1 That the spatial gradient term in 4 be unimportant 

t au&I to inflation; if it were to dominate the pressure sod energy density, then 

R(t) would grow u t’ls (since p would be cx p) and not exponentially. 

The equations of motion for 4 can be obtained either by varying thk action or by 

awing TJ‘* iy = 0. In either cane the resulting equation L: 

i + saJ(+ri) + V’(.#) = 0. Pa 

I haw upU$itly included the I”4 term which arises due to partick creation. The 

3EId friction krm ariaa doe to the apanaion of the Univera; aa the rcalu field 

gaina momentum, that momentum ia rcdahifted away by the expansion. 

Thin equation, which in maIogou# to that for a ball rolling with friction down 

a hill with a valley at the bottom, ban two qualitatively different regimes, each of 

which baa P aimple, approximate, analytic solution. (The potential V(b) is shown 

wzkem;rticaUy in Fig. Il.) 

(i) The slow-rolling regime, where the field rolls at terminal velocity and the 4 term is 

negligible. Thii occur in the inkrval where the potential is very Eat, the conditions 

for rutecient Batneu being’? 

IV”] < OE’, (314) 

]V’m#/Vl < (Igr)“a, WI 

Condition (311) wually m~bsumes condition (31b), m that condition (31a) generally 

~&a. During the rlow-rolling regime the equation of motion for 4 reduces to 

4 = -V’f3E. (33) 
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During the dew-rolling regime particle creation k exponentially l uppreeeed”’ because 

the Limaale for the rvolutim of + (which eete the energy/momentum ecale of the 

puticla aukd) ie much greater than the Bubble time (which mete the physics 

borisoa), Le., any particlu radiated would have to have wavelengths much larger 

than the pbyeiu boriron. Thue, the I’d term can be neglected during the WOW roll’. 

Suppole the interval where condition8 (3la,b) are satisfied is I+., 0.1, then the 

number of cfolde of cxpaneion which occur during the time 0 is evolving from 4 = 4. 

to 4 = 4. (s N) ie 

I 

4. 
N E -3 ~l’W”(41. (33) 

4. 

Wing P/V’ to be mughly constant over thin interval and approximating V’ aa z 

4,” (which is approximately true for polynomioal potentials) it follows that 

N IJ 3H=fV” > 3. 

If there ia a region of the potential where the evolution ie friction-dominated, then 

N will necessarily be greater than 1 (by condition (317~)). 

(ii)CoAerenf field orcilhfioru, in thin regime 

IV”1 > Be, 

and ) evolvu npidly, on a timescale Q: the Rubble time 8-l. Once 4 reaches the 

bottom of itr potential, it wiU oecillate with M angular frequency equal to m+ z 

V”(u)“‘. In thh regime it proves useful to rewrite Eqn.(30) for the evolution of 4 

as 

&i* = -3ng -I-$. (34) 

wbem 

p, = l/2$3 + V(4). 

Once + is oecillatiog about 4 = n, 4’ can be replaced by its avenge over a cycle 

< 4’ >c,etr= P*, 

and Eqn.(U) becoma 

be = -3ap, - rp, (35) 

which ie just the equation for the evolution of the energy density of zero momentum, 

-ive partids with a decay width r. 

Referring.back to Eqn(20) we can see that the cycle average of the pressure 

(i.e., apace-apace components of T,,“) ia ten--ae one would expect for NR particlea. -- 
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Fig. ll-Schematic plot of the fiotential required for inflation. The shape of the 
potential for d a: o determines how the barrier between 0 = 0 rod 4 = o (if one 
exista) is penetrated. Tbe value of 4 after barrier penetration in taken to be oO; the 
flat region of the potential is the idervrl I&, 4.1. 
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Pig. If-The evolution of p+, p,, and S during the epoch when the Universe is dom- 
inated by coherent &oscillations. Tbc reheat temperature TRJJ LZ g. -‘+hp,)1~2. 
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The c&rent 4 oscilhtiono are in every way equivalent to a very cold condensate 

of 4 p&i&. The decay of these oscillations due to quantum particle creation is 

equivalent to the decay of 0 particlea 
The complete let of aemi-claasical quations for the reheating of the Universe is 

b* = -3ffP4 -b*, (W 

6. = -4EP. + r?,, Kw 

A= = 8~Cb* + Pdl3, (36~) 

where P, = (r’/3O)g.T is the energy density in the relativistic partidea produced 

by the decay of the coherent Beld oscilldionr. The evolution for the energy density 

in the acalu in easy to obtain 

P+ = M’W&)-3ex~[-W - L)l, (37) 

where I have set the initial energy equal to M ‘, the initial epoch png when the 

scalar field begins to evolve rapidly (at R = R.. 6 = &, and t = f.).! 

From t = 1, until f = I’-‘, the energy density of the Universe is dominated by the 

coherent l loshings of the aalar field 4, ut into motion by the initial vacuum energy 

associated with #a Q. During thin phrse 

R(t) u. 1”’ 

that is, the Univem behaves M if it were dominated by NR particles-which it is! 

Interestingly enough it follows from f?qn(36) that during this time the energy 

density in radiation is actually decreasing (p, a R-‘/“-me Fig. 12). However, the 

all important entropy per comoving volume is incnaaing 

S o( R”I’, 

when t = I’-‘, the coherent cmcilldions begin todecay exponentially, and the entropy 

per comoving volume levela offindicating tbe end of the reheating epoch. The 

tempcraturr of the Universe at thi time is, 

TR,, =z g;“4(hJ”a (33) 

(here and throughout this dinauion I have assumed that the energy density which 

haa gone into partidea quickly thesunlizees). If r-* in less than H-l, w) that the 

Universe reheata in ks than M expansion time, then alI of the vacuum in converted 

into radiation and the’ Univeme ia reheated to a temperature 

TaH E g;l14hf (if r 2 8) 
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the ~4k.d cam of good reheating. 

To muin the evolution of the aalar held 4: early on 4 evolves very slowly, 

on l tiiala > the Bubble time If- *; then +I the potential steepena (and V” 

buomu > OP) 4 begin, to evolve rapidly, on a timucals a the Hubble time 

H-‘. & 4 odlatr about the minimum of itr potential the energy density in tbeae 

cuiflationr dominatta the energy den&y of the Universe and behaves like NR matter 

(p, CC R+); avehdly when L = I’-l,iheeoscill&ioo~ decay, reheating the IJGWSC 

4’ to a temperature of TRH z g. ( I’m#a (if r > H, m that the LJCV~M doea not 

e-fold in the time it takka the o4lationr to decay, then TRH cx g. -“*M). Saying 

that the Uoi~ r&h when 1 = r-l i l bit puxki~d = the temperature ha 

actually been decreeing since rbortly after the 4 wcitlatitions began. However, the fact 

that the temperature of the Univeme was actually c~nce greater than TR~ for t < r-l 

t of no practical useaince the entropy per comoving volume increases until f = r-l- 

by a hct0r 0f (AP/h#4, and any interesting objects that might be produced 

(e.g., bayogenesir, monopole production) will be diluted away by the subsequent 

entropy production. By any re;wnable measure, T,IH is the reheat temperature of 

the Univuls. The evolution of p+, p., and S are summarized in Fig. 12. 

Armed with our detailed knowledge of the evolution of 4 we are in a position to 

calculate the precise number of cfoldr of inflation necessary to solve the horizon and 

llatnea prdblema and to discuu direct bayou number production. First consider 

the requlit~ number of rIoI&, N, required for sufficient inflation. To solve the 

homogeneity problem we need to insure that a smooth patch containing an entropy 

of et led 10” resulta from inflation. Suppose the initial bubble or Euctuation region 

hu a tire If-’ rz m,JMa-certainly it can be no larger than this. During inRation 

it grown by a factor of up(N). Nut, while the Universe is dominated by coherent 

field orcillatioru it growl by a factor of 

(Rasl&) = (M’lT&)“s, 

when Tau L the reheat kmperature. Cubing the sire of the patch at reheating (to 

obtain it8 volume) and multiplying its volume by the entropy density (J rs Ti,), we 

obtain 

t&h =: &$,/(hf=T~;). 

Insisting that SW, be greater than 10“, it follows that 

N 2 56 + fln(M/lO’~GeV) + ~ln(T,&10’4GeV). 
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Varying M from 10’QCcV to lO*CeV and T .q~ from l&V to 10’DGcV the lower 

bound on N only varies from 36 to 66. 

The 9atnsu problem involvea the smallness of lhe ratio 

z = (k/R’)/(Wp/3) 

required at early timea. Taking the preinflationary value of + to be I, and remenr- 

bering that 
R-2 p = cons’t 

~(1) LX R 
i 

pci R-’ 
R= pUR-4 

it follows thai the nlue of z today is 

It*” = zie-~N(M/T*~)“‘(TRH/l~v)~( IOcV/3K). 

Insbting that zthv be at most of order unity implies lhat 

N 2 56 + ln(+;) + +f/IO%‘) + ;ln(T~,,/10~~GcV) 

--upto the term In(+;), precisely the nme bound as we obtained to solve the horn- 

geneity problem. Solving the isotmpy problem depends upon the initial aniaotropy 

present; during inflation isotropy decreases exponentially (see refs. 36). 

Finally, let’s calculate the baryon asymmetry thal cara be directly produced by 

the decay of the 4 particles themselves. Suppose that the decay of each 4 particle 

raults in the production of net baryon number 6. This net baryon number wight be 

produced directly by the decay of a b particle (into quarks and leptons) or indirectly 

through an intermediate state (0 + Xx; X, X + quarks and leptons; e.g., X might 

he a superheavy, color triplet HiggP). The baryon ssyrnmetry produced per volun~e 
ia then 

ng ” L”,. 

On the other hand we have 

(g.r’po)T;” = ?I,“,. 

T&en together it IoUows that”J’J’ 

w/s = (3/4)&a/m+ (40) 

Thi then ia the bayon number per entropy produced by the decay of the 4 particles 

directly. If the reheat temperature ia not very high, baryon number non-conserving 
-- 
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interactions will not reduce the asymmetry significantly. Note that the bayon a~ym- 

metry produced only depends upon the ratio of the r&eat temperature to the 4 

particle mau. Thin is important, aa it means that a very low reheat temperature can 
be toluated, DO long M the ratio of it to the 0 particle mass is not too small. 

OrI& of Denmlty hhomogcntith 

To this point I have a.wumed that 4 ia precisely uniform within a given bubble or 

Ructudtion region. Aa a result, each bubble or Ructurtion region resembles a perfectly 

isotropic and homogeneous Universe after reheating. However, because of deSitter 

space produced quantum fluctuationa, 4 cannot be exactly uniform, even within a 

small region of space. It is a well-known result that a mannless and non-interacting 

scalar field in dcSitter space hrs a spectrum of fluctuations given by (see, e.g., ref. 

38) 

64 = [2x)-” 
/ 

d’kb&e-‘k’, 

(41) 

and 5 and k are camoviog quantitiea. This result is applicable to inflationary scenarios 

M the scalar field responsible for inflation muat be very weakly-coupled and nearly 

maaaleaa. (That Universe ia not precisely in a deSitter expansion during inflation, i.e., 

p + p = 4’ # 0. does not affect this result significantly; this point is addressed in 

ref. 40.1 These deSitter space produced quantum tluctuations result in s calculable 

spectrum of adiabatic density perturbationa. Thae density perturbations were lint 

calculated by the authors of refa. 41-44; they have also been ralculated by the 

authon of refe. 45 who have addressed some of the technical issues in more detail. 

All the calculations done to date lead to the LWIX rtiult. I will briefly describe the 

calculation in ref. 44; my emphasis here will be to motivate the result rather than 

to rigorously derive the result. I refer the reader interested in more detail to the 

aforementioned references. 

It is usual to expand density inhomogeoeitia in a Fourier expansion 

bpfp = (2x)-= /&e-“‘d’k. 
, 

23 



The physical wavelength and waventrmber me r&ted to k by 

Aph = (2r/k)R(l) = AR(:). 

k ph = k/JW. 

The quantity most people refer to aa bp/p on a given scale is more precisely the RMS 

maan fluctuation on that scale 

(bp/p): E < (bM/M)” >h = A: z (2r)-‘k’16#, (44) 

which is jusi related to the Fourier component 6~ on that scale. Aenceforth I will use 

6k and (6p/p)k interchangeably. 

The cosmic scale factor is often normalized 80 that &,,.+ = 1; this means that 

given Fourier components are characterized by the physical size that they have to- 

day (neglecting the fact that once a given scale goes non-linear objects of that sire 

form bound objects that no longer participate in the universal expansion and remain 

roughly con&ant in ahe). The masa (in NR matter) contained &in a sphere of 

radius A/2 is 

M(A) z 1.5 Y 10”Mo(X/Mpc)3Rh’. 

Although physics depends on physical quantities (k,n, Aph, etc.), the comcwing labels 

k, M, and A are the most useful way to label a given component m the affect of the 

expansion has been acaled out. 

I should atate at the onset that the quantity 6p/p is not gauge invariant (under 

general coordinate transformations). This fact makes life very difficult when dis 

cussing Fourier component8 with wavelengths larger than the horizon (i.e., Aph 2 

II-‘). The gauge non-invariance of 6p/p h not a problem when &.h < ff-*, an the 

anrlysia is essentially Newtonian. The usual approach is to pick a convenient gauge 

(e.g., the synchronous gauge where gw = -I, g.+ = 0) and work very carefully (see 

refs. 46, 47). The more elegant approach is to focus on gauge-invariant quantities; see 

ref. 48. I wiU glou over the subtletier of gauge invariance in my discus&n-which 

is aimed at motivating the answer and not rigorously proving it. 

The evolution of a given Fourier component (in tbe linear regime-6p/p < 1) 

sepurta into qualitatively different regimes, depending upon whether or not the 

perturbation ia inside or outside the physics horizon. When a perturbation (more 

precinely a given Fourier component) is inside the bariron, Xph 5 H-l, micmphys. 

ical processes can affect its evolution-such procwsa include: quantum mechanical 

etTe&, presmre support, fmbeaming of putisles, ‘Newtonian gravity’, etc. In this 

regime the evolution of the perturbation is very dynamical. When a perturbation 
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is cutside the phyrics horizon, A+ 2 If-‘, microphysical processes do not affect its 

evolution; in a very real MDY its evolution is kinematic-it evolves as a wrinkle in 

the fabric of l paccttime. 

In the standard cosmology, a given Fourier component crosees the horizon only 

once, starting outside the horizon and cmuing inside at a time (see Fig. 13) 

T z (M/Ma)‘~3aec 

(valid during the radiation-dominated epoch). For thin reason it is not possible to 

create adiabatic perturbationa by causal microphysical proceases which operate at 

early timea“~“. In the atandord coanology, if adiabatic perturbationa are preeat, 

they mu& be present 06 initio. The smallness of the particle horizon at early times 

relative to the comoviog volume occupied by the observable Universe today strikes 

again1 

[It L possible for microphysical processes to create isothermal, more precisely 

isocuwature, perturbations. Once such perturbationr croaa inside the horizon they 

are characterized by a ape&urn 

(b/P) a wIMHr”a 

or #taper. Here Mu in the horizon maw when the perturbations were created. Thus 

the earlier the processes operate, the amaIler then perturbations on astrophysicatly- 

interesting scales. By an appropriate choice of gauge it is possible to view these 

isothermal perturbations as adiabatic perturbations witb a very steep epectrum, 

6p/p cc Me”‘; however. M must be the cane, they cross the horizon with the ampli- 

tude mentioned above. For more details, see refa. -17, 48.j 

Because the distance to the physics horizon (= II-‘) remains approximately con- 

stant during inflation, the situation ia very different in the ir&tionary Universe. ~11 

interesting ~cala start i&de the h&son, crone outside the horizon during inflation, 

and m-enter the horizon or~e again (at tbe usual epoch); oee Fig. 13. This means that 

caural microphyrical procesaea can ret up density perturbations on astrophyeically- 

interenting scales. 

Conaidar the evolution of a given Fourier component k. Early during the in- 

flationary epoch A+ 5 H-‘, and quantum Buctuationr in 4 give rise to density 

perturbations on tbis acafe. An the gale passes outside the horizon, say at t = f,, 

microphyrical proceaw become impotent, and 6p/p freezes out at a value, 

@P/P), = o(i~WM’), 

E O(iH~/M’), 
(45) 
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u the a&e leaver the horison. Note in the approximation that B and 4 are constant 

during the b&tionuy epoch the value of 6p/p as the perturbation leaves the horizon 

is indapendent of k. This scale independence of 6p/p when perturbations coca outside 

the h&son in of eoume traceable to the time translation invariance of desitter spact 

the Universe looks the same M each scale crosses outside the horiaon. 

While outside the horizon the evolution of a perturbation is kinematical, indt 

pendent of scale, and gauge depend& There is a gauge independent quantity (B f) 

which remains constant while the perturbation is outside the horizon, and which at 

horison crwaing is proportional to 6p/(p + p): 

f = ~P/(P + PI (for &i, = If-‘), (4’53) 

< z ccdt (for A,* > II-‘), (46b) 

* [~P/(P + P&, = VP/(P + P&, (46~) 

(see refs. 44, 49, 50 for more details). Wben the perturbation crosses back inside 

the horizon at time f = TV, (p + p) = np(n = 4/3- radiation-dominated; n = 1, 

matter-dominated) so that up to a numerical factor: [6p/(p + P)[,=~~ rz (6p/p)t=1,. 

During inflation, however, p + p = 4’ a p z M’ m that: ISp/(p + p)]l,+, z 

(M’/$)(6p/p)t=t,. Note, M’/$ is typically a very large number. Eqns(45, 46) 

then imply 

(~P/P)M, = (~P/P)H = H=l4, (47) 

Note that in the approximation that 4 and H are are constant during inflation and 

the amplitude of dp/p at horirnn crossing (= (6p/p)n) is independent of scale. This 

fact is traceable to the timetranalation invariance of the nearly-d&Her inflationary 

epoch and the scale-independent evolution of (6p/p) while the perturbation is outside 

the horizon. The so-called scale-invariant or Zel’dovich spectrum of density pertur- 

bations WM firat discuaaed, albeit in another context, by Hwrison” and Zel’dovich6a. 

Scale-invariant adiabatic density perturbations are a generic prediction of inflation. 

[Becauas If and 4 are not prccieely constant during inflation, the spectrum is not 

quite mAtinvariant. For moat models of inflation the deviations are not expected 

to be significant; for further discussion see refs. 53, 54.1 Although the details of 

structure formation are not presently sufficiently well undentood to say what the 

initial spectrum of perturbations must have been, the Zel’dovich spectrum with an 

amplitude of about IO-’ - IO-’ is certainly a viable possibility. 

Before moving on, let me be very precise about the amplitude of the inffation- 

produced adiabatic density perturbations. Perturbations which re-enter the horizon 
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while the Univeme k still radiation-dominated (A I A,, z 13h-“Mpc), do m as a 

sound wwa in the photons and baryons with amplitude 

(6p/p), E kS/a16#2r)J/’ ” H’/(rJ+) (480) 

Perturbationa in non-interacting, relic particle (such aa massive neutrinos, axions, 

etc.), which by the equivalence principle must have the oame amplitude at horizon 

crowing, do not oscillate, but instead grow &uly (a In R). By the epoch of matter- 

radiation.equivaleoce they have an amplitude of 2-3 times that of the initial baryon- 

photon sound wave, or 

(6p/p)nr~ ” (2 - 3)(6p/p)s = (2 - 3)H1/(rs”+9 (W 

It ia this amplitude which must be of order IO-’ - IO-’ for successful galaxy format 
Lion. 

Perturbrtionr which re-enter the horizon when tbe Universe ic. +lready matter- 

dominated (uales A 2 A., = 13h-‘Mpc) do no with amplitude 

(6p/p)~ = k”‘l6&(2r)“’ E (H”/lO)/(r”‘$) (4% 

Once inside the horizon they continue to grow (M f’l’ since the Universe is matter- 

dominated). These scaler an important for the very large-scale structure of the 

Univene and determine the microwave aniaotropy on large angular (> I’) scales: 

&T/T = ~/WP/P)H. 

When the structure formation problem ia viewed as an initial data problem, it ia 

the spectrum of density perturbations at tbe epoch of matter domination which is the 

relevant input spectrum. The shape of this spectrum has been carefully computed 

by the authors of ref. 55. Roughly Ipeaking, on scales less than Aeg it is almost flat, 

varying aa Aws/’ m M-“’ for eda around the galaxy scale (z 1Mpc). On scalea 

much greater than )Leg, (6p/p) ct A-’ o( AF’l’ , [III the synchronous gauge where 

adiabatic perturbations grow aa 1’ (n = 2/3 matter dominated, n = I radiation 

dominated). Since these scales have yet to re-enter the horizon they have not yet 

achieved their horfron-crossing amplitudel. 

In order to compute the amplitude of the inflation-produced adiabatic density 

perturbations we need to evaluate If’/4 when the ~trophysically-relevant scales 

crossed outside the horiron. Recall, in the previous section we computed when the 

comoving scale corresponding to the praent Httbble radius crocad outside the hori- 

BOO during inflation-N z 56 or no e-folds before the end of intlation, cf., FZqn.(39). 
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The p-t Hubble radius corresponda to a vale of about 3OWMpc; therefore the 

auk Al& mud have cmaed the hotiron I@OOO/A) e-folda later: 

NA z NHOR - 8 + h(A/Mpc) E 48 + In(A/Mpc) 

(ik Brat oukide the horizon, last back in-see Fzg. 13). Typically If”/4 depends 

upon N, to ulme pweP’; since NA only varies IoguithmicaUy (AN/N z 0.14 

in going from O.fMpc to 3OOOMpc), the scale dependence of the spectrum is very 

minimal. 

Aa mentioned earlier, a generic prediction of the inflationary Universe is that 

today fl should be qual to one to a high degree of precision. Equivalently, that 

mean. 

IWRaVW&+)l a: 1 
since 

Cl = l/(1 - (k/R’)/(erGp/3)). 

Therefore one might conclude that an accurate measurement of fl would have to yield 

1 very precisely. Bowever, be&e of the adiabatic density perturbations prod&d 

during ~infiation that in not the cane. Adiabatic density fluctuations correspond to 

fluctuationa in the local curvature 

6~1~ = 6(kfR=VQ i. 

Thii means that, ahould we be able to very accuntely pmbe the value of fI (quiv- 

ale&y the cwvature of space) on the acafe of our Hubble volume, say by using the 

Hubbk diagram, we would necessarily obtain a value for fI which is dominated by 

the curvature Euctuationa on the scale of the present horizon, 

fh, c- 1 + 6(k/R’)/(E&p/3) z 1 f O(lO-‘), 

and M we would obtain a value different from 1 by about a part in 10’ or M. 

Finally, kt me briefly mention that isothermal density perturbations can also 

uiae during inflation. [Iaothemnl density perturbations are characterized by 6p = 0, 

hut 6(&s,) # 0 in mme component(s They correspond to spatial Euctuations 

in the local precaure due to spatial fluctuations in the local equation of state.] Such 

perturbations can arise from the deSitkr pmduced fluctuations in other quantum 

fields in the theory. 

The simple& example occura in the axion-dominated Universebe~5’~La. Suppose 

that Peccei-Quinn symmetry breakfngaccun before or during inErtion. Until inalan- 

ton e&k become important (T z few 1OOMeY) the axion 6eld a = f.0 is massless 
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and R ia in general not aligned with the minimum of its potential: B = 8, f 0 (I 

have taken the minimum of the axion potential to be 0 = 0; f., = the T = 0 Y&C- 

uum expectation value of the scalar field which brraka the PQ symmetry). Once the 

axion developa a mana (equivalently, its potential develops a minimum) 6 begins to 

oscillate; these coherent oscillations correspond to a condensate of very cold axions, 

with number density OL 9’. /For further discus&m of the coherent &on oxillatiol~s 

see refa. W-61.] During infIation deSitter space produced quantum Ructuatious in 

the axion field gave rise to spatial Euctuations in 8,: 

68 = 60/fa z H/f. 

Once the axion field begins to oscillate, these spatial fluctuations in the axion field 

corrsapond to tluctuationa in the local axion to photon ratio 

6(~.hvb.h) =268/e, = 2Hi(f.e,) 

More precisely 

(bn./n.)t = k”‘16a(k)j/(2r)J’1 = H/(2#f#,), 

where /A is the expectation value off. when the scale A leaves the horizon (in some 

mod& the expectation value of the field which breaks PQ symmetry evolves a the 

Universe is inflating, 80 that fr can be < f.). It is possible that these isotherm4 

uion fluctuations can be important for galaxy form&x in an x&o-dominated, 

inllationary Univene. 

Sp~clBc Mod&--Part I. Interemtimg Failnre~ 

‘Old InBatIon’ By old inflation I mean Cuth’s original model of inflation. In his, 

original model the Universe inflated while trapped in the 0 = 0 f&e vacuum state. 

In order toinEateenough the vacuum had to be very met&able; however, that being 

the cue, the bubble nucleation probability was low. So low that the bubblea that did 

nucleate never percolated, resulting in a Universe which resembled swim, cheese more 

than anything elaez4. The interior of an individual bubble was not eaitable for our 

present Universe either. Because he was not considering Bat potentials, esentislly 

alI of the original f&e vacuum energy reaidea in bubble walls rather than in vx~un 

energy inside the bubbler themselves. Although individual bubbles would grow to a 

very large sire given enough time, their inter+8 -would contain very little entropy 
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(compared to the Id8 in OUT observed Universe). III *urn, the Universe inflated 

all right, but did not ‘gracefully exit’ from inflation back to a radiation-dominated 

UniveAcwe, but no cigar! 

&l~~-Welnbarg SIJ(6) The first model of new inflation studied was the 

C&man-Weinberg SU(5) GUTas*‘*. In this model the field which intlates is the 

24-dimensional Higp which also break8 SU(5) down to SU(3) x SU(2) x U(l). L-et 

4 denote ita magnitude in the SU(3) x SU(2) x U(1) direction. The one-loop, sen 

temperature Coleman-Weinberg potential in 

V(4) = 1/2Bd + B4’{ln(4=/oa) - l/2), 

B = 25&,/16 z IO-’ (51) 

0 z 2 x lO’%eV 

Due to the absence of a mass term, the potential is very Bat near the origin (SSB 

arisen due to one-loop radiative corrections”); for 4 a o: 

V( 4) I, Boa/2 - A4’/4 

A E f4Bln(4’/oa)l E 0.1 
(52) 

The hoite temperature potential has a small temperature dependent harrier [height 

O(P)] near the origin 14 z O(T)]. Th e critical temperature for thin transition is 

O(10” - 10’SGcV). When the temperatun of the Universe dmps to O(109CcV) 

or so, the barrier becoma low enough that the finite temperature action for bubble 

nucleation drops to order unity and the 4 = 0 false vacuum becomes unstable”‘. In 

analogy with solid state phenomena it is expected that at this the temperature of 

the Universe will undergo ‘spinodal decomposition’, i.e., will break up into irregu- 

larly rhaped regions within which 4 ia approximately constant (so-called fluctuation 

regiona). Approximating the potential by Eqn(52) it is easy to solve for the evolution 

of 4 in the slow-rolling regime [IV”! < 9If for 4’ 5 4: z 0’(10’/~m~,fn(4’/o”)~)) 

(E/4)” = gN4), (534 

pz$!g, 
WI 

PI 

where N(4) 3 $ Hdt is the number of e-folds of inflation the Universe undergoes 

while 4 evolves from 4 to 4.. Clearly, the number of e-folds of inflation depends 

upon the initial value of 4(E 40); in order to get sufficient inflation 4. must be 

O(H). Although one might expect 4. to be of tbii order in a typical fluctuation 
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region since B z 5 x IO’GeV E (temperature at which the 4 = 0 false vacuum loses 

it, metatability), there is a more fundamental difficulty. In using the umi-classical 

quatiool of motion to describe the evolution of 0 one is implicitly a~uming 

4 = 4e1r.,icol+ Abqu, 

A4ow d: 4crutic.1 
The deSittcr space produced quantum fluctuations in 4 are of order a. More up&if- 

ically, it hls been shown that’3,M 

A4 rz (8/2r)(H:)“’ 

Therein lies the difficulty-in order to achieve enough intIation tbe initial value of 4 
muat he of the order of the quantum fluctuations in 4. At the very least this calls 

into question the semiclassical approximation. 

The Gtuation gets worse when we look at the amplitude of the adiabatic density 

(54a) 

(54’4 

(54c) 

For galactic-scale perturbations N = 50, implying that (6p/p)~ rs 30! Again, its 

clear that the basic problem ia traceable to the fact that during inEation 4 < R. 
The decay width of the 4 particle in of order (XCU~ o CL 1O”GeV which is 

much greater than H (implying good reheating), and M the Universe reheats to a 

temperature of order 1O”GcV or no. 

From Eqns(53a, 54~) it is clear that by reducing A both problems could be 

remedied-however X z lo-” ir necessary”. Of course, a long as the ia- 
Rating field is a gauge non-aioglet A is set by the gauge coupling strength and 

A z 0(10-l) > lo-‘3. From thin interesting failure it is clear that one should 

focus on weakly-coupled, gauge singlet fields for inflation. 

Geometric Hierarchy Model The fimt model propsmed to addrem the dificulty 

mentioned above, was L supersymmetric CUP’~“‘. In this model 4 in a scalar 
field whose potential at tree level is abmlutely flat, but due to radiative correction8 

develops curvature. In the model 4 is Jao reqmnsible for the SSB of the GUT. The 

potential for 4 is of. the form 

V(4) = p41e, + caln(4/mpJ (55) 
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wbm p = 1o*~CeV b the de of rupeymmetry breaking, and c, and c1 ore 

c~mtantr which depend upon detaib of the theory. Tbii form for the potential ia 

only valid -y from the SSB minimum (Q d: 0 z m#) and for # > p. The authors 

praume that bigber order effecta will force the potential k develop a minimum for 

# zz m+ Since V’ o[ 4-l the pokntid evolver Batter for iarge #-which already 

sounds good. 

The inRationary scenario for tbii potential proceed8 aa foUowe. The shape of the 

potential h not determined near + = 0; depending on the ahape 4 evolves to some 

initial value, say 4 = ho, either by bubble nucleation or spinodal decomposition. 

Then .it begilu to roll. During the alow-roll which beginr when IV”1 E 9ff’ and 

4. = (ca/24r~r)“~‘w 

Ii’ = &44 

(1 - #/m:r) = (C&C8)N(O) 

wdrr = WWW 
‘- (gSl=/3”=)(c:‘a/cl)p=4/m~. 

cw 

VW 

w4 
Wb) 

Note that during the alow roll (0 > 0,) 

*>fi,e 14 
H-ii c, 8I jba ’ 

= lo”+=/,, > 1, 

thereby avoiding the difficulty encountered in the Coleman-Weinberg SU(S) model 

where ) < I3 wan required to infhk. For c, E O(l), Q E IO-‘--acceptable values 

in the model, (6p/p)a = lo-’ and N(#,) z 4rc,/ca cz 10’. The number of e-folds of 

inliation ir very larggt109. Thin ia quite typical of the very Bat potentials required 

to achieve (6p/p) rz IO-’ - 10m6. 
Now for the bad news. In tbii model 0 is very weakly coupled-it only couplea 

to ordiiyr particles through gravitational strength interactions. Its decay width is 

r = OWl$d, (58) 

which ia much less than II (implying poor rebeating)~and lead8 to a reheat kmper- 

ature of 
TRH = olm%Pl, 

= w/m;), (59) 

= 1OMeV. 
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Pig. 14-h SUSY/SUGB modeb < (D >r L not neceawily equal to rero. If 
< (p >r> 0, them L the danger that < (D >r emootbly evolvea into the sero tempera- 
tute minimum of the potential, thereby eliminating the powibility of inflation (upper 
figure). A lure way of preventing tbii is to design the potential 80 that < 4 >=< 0 
(lower ligure). 



Such a rebeat temperature eafely returns the Universe to being radiation-dominated 

before primordial nucleosyntbesis, and produces a smooth patch containing a~ enor- 

InO”. entropy--for c2 c.5 IO-‘, C‘ z 1, s&&n z (m;,/pvIw)c’” !z IOJJezp(3x log), 

but doa not reheat the patch to a high enough temperature for baryogenesis. Poor 
reheating is P problem which plagues almost all potentially viable mod& of inflation: 

(6p/p) z IO-’ - lo-* requires that the potential be very Bat, which in turn requires 

that 4 must be weakly-coupled and therefom ?‘RH o( I”/’ ia natunlly very low. 

CERN SUSY/SUGR Mod&e’ Early on members of the CERN theory group 
recognked that supersymmetry might be of wee in protecting the very amall couplings 

necessary in inflationary potentials from being overwhelmed by radiative corrections. 

They explored a variety of SUSY/SUGR models (and dubbed their brand of inflation 

‘primordial inflation’). In the process, they encountered a difficulty which plagues 

almost all supersymmetric modele of inflation based upon minimal aupergravity tbc 

aria. 

It is usually assumed that‘at high temperatures the expectation value of the 

inflatihg field ia at the minimum of ita finite temperature effective potential (near 

0 = 0); then M the Universe co& it becomes trapped there, and then eventually 

slowly evolves to the low tempenturc minimum (during which time inflation takes 

place). In SUSY models < 4 >I is not necessarily zero at high temperatures. In 

fact in essentially all of their models < 4 >r> 0 and the high temperature minimum 

smoothly evolves into the low temperature minimum (a shown in Fig. 14 )“. As P 

result in these models the Universe in fact would never have inflated! 

There ore two obvious remedies to tbia problem: (i) arrange the model .w that 

(& <_ 0 (ae shown in Fig. 14), then 4 necessarily gets tapped near 4 = 0; or (ii) 

~eume that 4 is never in thermal equilibrium before the phase transition so that 4 

is not constrained to be in the high temperature minimum of its finite temperature 

potential before inflation. Variants of the CERN models based on these two remedies 

have been constructed by Ovrut and SteinhardteP and Holman, Ramond, and Ross”‘. 

Non-minimal SUGR theories do not seem to be plagued by tbii difficulty (see Jensen 

and Olive**). 

Leuona Learned-‘A Prescription for Sneceufol New MI&on’= - 

The unsuccessful models discussed above have proven to be very useful in that they 
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have allowed us to ‘write a pmcription’ for the kind of potential that will l xeasfully 
implement in8rtioa. The following ptwcription incorporJe# these lessona, together 

with other bwx~ rbicb have been learned (sometima painfully). A# we will 8ee 

alI but the 1-t of the pnscribed featurea, that the potential be part of a sensible 

particle pbyka model, are relatively easy to mange. 

(I) The potential should have an interval which ia sufficiently flat so that 4 evolves 

#lowly (relntive to the expansion timescale B-‘)-that is, 8at enough so that a 

alow-rollover transition ensues. As we have wen, that means an interval 

where 

I4.a 4.1 

IV"1 5 PIP, 

IV’m,r/VI < (48r)‘l’. 

(2) The length of the interval where 4 evolves slowly should be much greater than 

H/2x, the scale of the quantum fluctuationa, M) that the semi-clasaical’approximation 

maken CXMC. [Put another way the interval should be long enough no that quantum 

guctuationr do not quickly drive 4 acroae. the interval.] Quantitatively, this calla for 

Ik - 4.1 r~ WW”‘W/W 
r 

where At is the time required for 4 to evolve clas&alyy from 4 = 4. to 4 = 4. 

(3) In order to rolve the flatness and homogeneity problems the time required for + 

to roll from 4 = 4. to 4 = 4, should be greater than about 60 Bubble times 

,$-.,I,[ 3H’d4/(-V’) e 3H=JV” 2 60 

The precise formula for the minimum value of N is given in Eqn(39). 

(4) The scalar 6eld 4 should be smooth on P sufficiently large patch (my ilze L) sd 

that the energy den&y and pressure anaocirted with the (04)’ term is negligible: 

I/Z(V4)'=(4o/L)'a V(4,)-M'. 

(Otbrrriaa the (V#)l km will dominate p md p, Y) that R(t) ox P/‘-that ia, 

Mation doea not occur). UnmUy thin condition is easy to uAsfy, aa all it requirea 

is that 

t~40/~==(40/)50~-'; 
since O. in usually 6: n+,,, (40/mH)H-' a -B-‘-that is 4 only need be smooth 

on P patch comparable to the physics horizon If-‘. 11 will discuu a cae where it is 
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not ury to satisfy-L.inde’a chaotic in9ation.l Once in8atioo does begin any initial 

bho&tio in + are rapidly l mothed by the upooential upanaion. 

(6a) In order to inare P viable venario of g-daxy formation (and microwave 

aniwtmpiu of ao acceptable magnitude) the amplitude of the adiabatic dewity per- 

turbationr must be of order IO-’ - lo-‘. IIo a Universe dominated by weakly- 

interacting relic particlea such an neutriooa or axions, (6p/p)u0 must be a few 

x~O-~.] Tbii in turn results in the condraint 

few x 1r8 z (WPhD = (3 - 3)WP)S = (2 - 3)(tlal~“2~),.,~,, 

=a w/i, Colmr, = lo-’ 

In general, thir ia by far the most di5cult of the constraints (other than sensible 

particle phyio) to latiify and leads to the necessity of utremely Bat potentials. I 

should add, if one has another means of pmducing the density perturbations oecesaary 

for galaxy formation (e.g., cosniic attingn or isothermal perturbations), then it ia 

sufficient to have 

walhh.z, 5 lo-’ 

(6b) Lothqmal perturbations produced during inOatioo, e.g., aa discussed for the 

cue of ata &on-dominated Universe, also lead to microwave aniaotmpien and possibly 

h-ucture fontion. The amoothneaa of the micmwave background dictates that 

(blF)rso 5 few x lo-’ 

while if they are to be relevant for structure formation 

(bp/p),so L- 10-a - 10-d 

in the UK of isothermal axion perturbations this is easy to arrange to have 

(6p/~),~~ a IO-* u&so the scale of PQ symmetry is larger than about lO%eV. 

(6r) The reheat temperature must be rufficiently high eo that the Universe 

in radiation-dominated at the time of primordial nucleosynthesia (1 rz- lo-’ - 

IO’wc, T = IOhfeV - O.IMeV). Only in the case df poor reheating is TRH likely 

to be anywhere an low as lOMeL’, in which case Z’A~ z (l’mfl)‘/2 and the condition 

that TEH be 2 1OMeV then implies 

r 2 IO-“GeV cz (6.6 x IO-“#cc)-’ 

(6b) The more Wingent condition on the reheat temperature in that it be su5cienfly 

high for baryogenesia. If baryogenesis proceeda in the usual way“, then TRH must 
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be greater than about l/10 the maan of the particle whose out-of-equilibrium decays 

am rsrponsible for producing the baryon asymmetry. Assuming that this particle 

coupler to ordinary quarks and leptons, ib mass must be greater than 10QGcV or 80 

to insure l ruffidently-longlived proton, implying that the reheat temperature must 

be greater than about 10’GeV (at the very least). On the other hand if the baryon 

uymmetry can be produced by the decays of the 4 particles themeelvea, then 

~B/S = (0.75)(T.w/m& 

and a very low reheat temperature may be tolerable 

where a usual .z is the net bayou number produced per &decay. 

(7) If # is not a gauge singlet 6eld, aa in the case of the original Colem.xn-Weinberg 

SU(5) model, one must be careful that ‘+ rolb in the correct direction’. It was shown 

that for the original Coleman-Weinberg SU(5) models 4 might actually begin to roll 

toward the M(4) Y U(1) minimum of the potential even though the glob31 minimum 

of the potential was the SU(3) x SU(2) x U( 1) minimum”. This in becauee near 

4 # 0 the SU(4) x U(1) direction is usually the direction of steepest descent. Such 

an occurence would be catastmphic aa the transition from SU(4) x U(1) to SU(3) x 

W(2) x U(I) would in general be stmngly first order (and not of the slow-rollover 

variety), thereby leaving behind aswine-cheese Universe. This is theso-called problem 

of ‘competing phases’. As mentioned earlier, the extreme tl~tncss required to obtain 

rufficiently small density perturbations probably precludes the possibility that 4 is a 

gauge non-singlet, eo the problem of competing phases doer not usually arise. 

(8) lo addition to the scalar dendty perturbations discussed earlier, tensor or grwi- 

tatiooal wave perturbations alm arise (these correspond to perturbations in the sym- 

metric part of gru)“. The amplitude of these perturbations is easy to estimate. The 

energy density in a given gravitational wave mode (characterized by its wavelength 

A) is 

pew z m;, l&‘/A’ 

where A is the dimeasionlesa amplitude of the wave. As each gravitational wave mode 

cmlses outaide the horizon during inflation deSitter space produced Euctuations lead 

to 
(pc~)~=~-~ Y P, or h z H/m,,. 
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While outside the horizon the dimensionleas amplitude h remains constant, and so 

each mode eaten the horisoo with a dimensionless amplitude 

h e H/m,, 

Gravitational wave perturbations with wavelength of order the present horizon lead to 

a quadrupole anisotropy in the microwave kmperatun of amplitude h. The upper 

limit to the quadropole anisotropy of the microwave background (6T/T < few x 

IO-‘) leads to the constraint 

Hfny < lo-‘, 

M 5 0( 1O”GeV) 

(recall 61’ E (8*/3m~)M’). 

In turn this leads to a conetraint on the reheat temperature (using g. z 10’) 

TRH 1 g;‘/‘M 5 /em x 1O’“CeV 

(9) One has to be mindful of various particles which may be produced during the 

reheating process. Of particular concern are stable, NR particles (including other 

scalar fields which may be set into oscillation and thereafter behave like NR matter). 

Since PNR/PR cx R(t) and today p~n/p~ z 3 x 10’ or so one ha to be careful that 

pff~/p~ ia very small at early times 

t 

3 x IO’ today 
PNRIPR 5 10-S T = IGeV 

10-18 T = IO’%eV 
Of particular coocern in supersymmetric modeb are gravitinos which can dc 

cay shortly after nucleosyotbesis and photodissociate the light elements produced 

(particularly D and ‘Li)‘3. [In fact, tbe constraint that gravitinoa not be overprw 

duced during the reheating process leads to the very restrictive bound on minimal 

SIJSY/SUGR models of inflation: TRH 5 109GeV or so.] In supersymmetric mod- 

els where SUSY breaking is done ala Polonyi”, the Polonyi field can be set into 

oscillation”’ and these oscillxtioos which behave lik’e NR matter can come to domi- 

nate the energy density of the Univene too early (leading to a Univene which if far 

too youthful when it cools to 3K) or even worse decay into dread gravitinos! In sum, 

one baa to he mindful of the weakly-interacting, longlived particles which may be 

produced during reheating a~ they may eventually lead to energy crises. 

(10) In SUSY/SUGR models where tbe scalar field responsible for inllntion ;a in 

thermal equilibrium before tbe inflationary tranc.itioo, one haa to make sure tbat < 
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p >= doa not smoothly evolve into the sero temperature minimum of the potentid. 

A sure way of doing tbi L to arrange to have 

this ir the ao-called thennd constraint”. 

(11) La& (in my probably incomplete list) but certainly not least, the aalar potential 

neccssoy for successful inflation should be but a part of a ‘unsible, perhaps eveu 

elegant, particle pbyeica theory’ (see Fig. 15). It seems unlikely that cosmology will 

be the tail that wags the dog! 

Tbeee conditions are spelled out in more detail in ref. 53. In general they lead 

to a potential which is ‘short anod quat’ and hu a dimensionless coupling of order 

10-l’ romewhere. In order that radiative correctiona not spoil the Eatness, it is all 

but mandatory that 4 be a gauge singlet held which couples very weakly to other 

fields in the theory. 
To give an idea of the kind of potential which we are seeking consider 

v=v,-a4’-b4=+A4’ 

The conrtr+nb discussed above are satisfied for the following seta of pammeten 

SET 1% 

sET2s 

, 

b z 4 x lO’A”‘rry 

A a 5 < 4 P/40 x 10-10 2 lO”A’m~ 

0 = 3 x lo’A’&pI 

M = v$’ E 3 x 10’Awn~ ” Xw7 

v = A(43 -0-y (b = 0, a = 2Ao=, V, = AU’) 

o/mpr = l/2, 1, 2, 3, 10 

A = 2 x lo-“, 5 x lo-=o , lo-‘5, 2 x IO--‘6, 3 x lo-” 

M z A'/% 

SpecIh Mod&, Part II. Tro Skllple Mod& !l’hrt Work 

To date a handful of models that satiify the prescription for succauful inflation have 

been constructede’~‘9~‘0”-‘0. Ii ere, I will discuu two particularly rimple models. 
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The brat ie an SU(5) GUT model proposed by Shafi and Vilenkio” and retine.~ 

by Pi”. (Note, there is nothing special about SU(5); it could just a8 well be Es 

model.] I will diiuae Pi.8 version of the model. In her model the inflating field 

$ L a very weakly-coupled, complex gauge singlet field whose potential is of the 

Coleman-Weinberg tonnea 

V(4)= E[4'ln(B/u')+ $0’ - 44)]/4 w 

where 4 =‘I&1 and f? arises due to l-loop radiative corrections from other fields in 

the theory and in Kt to be O(lO-“) in order to successfully implement inflation. 

INote, for simplicity I have not shown the coupling of 4 to the other fields in the 

theory.] Since tbe l-loop corrections due to other fields in the theory are of order 

A24'ln4 (A is the typical quartic coupling, e.g., A4'@) the dimensionless couplings 

of 4 to other fields in the theory must be of order IO-’ or 80. IO her model, 6 is lhe 

field responsible for Pea&Quinn symmetry breaking; the vxuum expectation v&e 

of (41 breaks the PQ symmetry sod the argument of 4 is the axion degree of freedom. 

The vacuum expectation value of (41 also induces SU(5) SSB aa it leads to a negative 

mans-quared term for the 24.dimensional Riggs in tbe theory which breaks SU(S) 

down to SU(3) x SU(2) x U(1). In order to have the correct SU(5) breaking scale, 

the vacuum expectation value of l&i must be of order IO’eGcV. In addition LO the 

usual adiabatic density perturbations her model also has isothermal fluctustious of a 

similar magnitude”*. The model reheats to a high enough temperature (barely) for 

baryogenesis. So far the model succaurfully implements inRaLioo, albeit at the cost 

of a very small number (B z LO-“), h w one origin in nol explained and whose value 

L not stabilized (e.g., by oupenymmetry). 

The second model is a SUSY/SUGR model proposed by Holman, Ramond, and 

ROM” which is based OIL a very simple auperpotential. They write the superpotentid’ 

for tbe full theory as 

W=ltS-tC (61) 

where the I, S, G pieces are the inilation, SUSY, and GUT sectors respectively. For 

the I piece of the superpotential they cbooee the very aimple form 

I = (A’/M)(p - M)‘, (W 

where M = mPJ(gn)‘la, A is an intermediate scale, and 4 is the field responsible 

for inllation. This leads to the following scalar potential 

Vf(4) = w(I4l’/@)llwa4 + 4’w7z 7 w/m 

= A4czp(4=/~)14e/~ - 44’/MS + 74’lM’ - 44=/M= - 4=/M= + 11. 
(f53) 
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Their potential baa one free parameter: the rna(ld uale A, which will be net shortly. 

Expanding the exponential one obtains 

V,(4) = A‘(1 - #/M= + 6.54’lM’ - t?~‘/hf”...), (W 

V; = A‘(-124’/M3 + 264=/M’ -404*/M’...) (65) 

It is sufficient to keep just the first two terma in I’,(#) to solve the equationa of 

motion 

4/M = Il2W(4) + l/3)1-’ (=4 

Ha/d ‘- (12~“+‘(h/M)~(~/M)-~ z (I~/x&)(A/M)~N’, (‘W 

By choosing A/M z 9 x IO-’ density perturbations of an acceptable magnitude 

result (and about 2 x 10” e-folds of inflation!). A/M z 9 x lO-5 corresponds to an 

intermediate scale in the theay of about A L- 2 x IO”CeV. 

The fi field couples to other fields in the theory only by gravitational strength 

inter,actioos and 

r z m;/hf z As/M”, (67) 

where ms ? 6cA’/&f. 

The resulting reheat temperature is 

TRH 2 (rm~)“‘l’- (A/M)JM z IO’GeV. (68) 

The baryon asymmetry in this model is produced directly by #-decays” (4 - 

&Rx; H,& 4 q’s I’3; HJ = color triplet, isoxalar Riggs) 

no/s z (0.75t)TRH/m+ 

z lo-‘<(A/M) 

A C, CP violation of about c z IO-’ is required to explain the observed batyon 

asymmetry of the Universe (rig/s L lo-“). 

Their model satisfies all the constraints for succeglful inflation except the thermal 

constraint. They argue that the thermal constraint, is not relevant an the interactiona 

of the 4 field are too weak to put it into thermal equilibrium at early timea and 

rely on 4 being near the origin (6 = 0) in some region of the Universe. This model 

is somewhat ad ha in that it contains a special sector of the theory whose sole 

purpose in inflation. Once again the model contains a amall dimensionless coupling 

(the coefficient of the b’.term = 3 x lo-‘*) or equivalently, a amall mass ratio_ 

(A/M)’ = lo-” 
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Since the model is auperaymmetric that emaU number is &abilised against radiative 

corrections. Although the small ratio is not explained in their model, itn value when 

upresed as l ratio of mass scales suggest that it might be related to one of the other 

small dimensionless numbers in pa-tide physics (which also beg explanation) 

(mour/m&d) = lo-’ 

(mw/mJ cz lo-” 

gc ‘- m,pmGeV rz 10-e 

While neither of these modelo is particularly compelling and both have somewhat 

contrived aoldy to succes.sfuIly implement irAtion, they are at the very least ‘proof 

of existence’ models which demonstrate that it is poseible to construct a simple model 

which satisfies all the know constraints. F’air enough! 

Toward the Inflstionary Paradigm 

Guth’s original model of inflation was based upon a strongly, first order phase 

transition associated with SSB of the GUT. The tint models of new inSJioo were 

baaed upon Coleman-Weinberg GUT potentials, which exhibit weakly4irc.t order 

phase trannsitiona. It now sppeam that the key feature needed for inflation ia a very 

Rat potential and that ewe potentials which lead to second order transitions (i.e., 

the 4 = 0 atate is never met&able) will work just as well”. Moat of the models for 

inflation DOW do not involve SSB, at least directly, they just involve the evolution of 

a scalar initially dieplaced from the minimum of its potential. [There is a downside 

to this; in many models inflation is a sector of the theory all by itself.] Inflation bss’ 

become much more than just a ecenuieit has become an early Universe paradigm! 

On the horizon now are models which inflate, but are even more far removed 

from the original idea of a strongly-fimt order, GUT SSB phase transition; I’ll discuss 

three of them here. Inflation-that ie the rapid growth of our three familiar spatial 

dimensions, appears to be a very generic phenomenon associated with early Universe 

microphysics. 

Chaotic Inflation Linde’l h+s proposed the idea that bAalion might result from a 

scalar field with a very simple potential, ray 

V(4) = A4.s (69) 
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(W Fii. 16), which due to ‘chaotic initial conditions’ (which thou far have not been 

wdIdc6ned) L dispIaad from the minimum of itr potential-in this cue # = 6. 

With the initial condition 4 = 00 tbi potentiaI L very wy to awlyre: 

N(4o) = 11 Bdf = 44o/~#, (704) 

(6p/p),, LT (Ii’/& ” (32/3r=)‘fa~‘laN(4)‘l=. (704 

II: x&r to obtain density perturbations of the proper amplitude (6p/p z lo-‘) A 

muat t.* vew small 

A = 4 x 10-1’ 

-busineca u usual! In order to obtain sufficient indation, the initial value of 4 must 

be 
N(400) = r(4dmyd’ 260 

* 40 2 4.4w 
Roth of these two conditions are tither typical of potentials which successfully imple 

ment infiation. However, when one talk@ about LrueIy chaotic initial conditions one 

wooden if a large enough patch exiatr where # ia approximately constant. Remember 

the key co~traint ia that the gradient energy density be negligible 

W)‘P a A4’ 

Labeling the typicll dimeruion of the patch t, the above requirement translates to 

L > A-“a(mJ#e)m;’ z Z(#o/mfi)H-’ (71) 

which mquires that L be rather large compared to the Hubble radius at the time, 

therefore veming to require rather rpecial initial conditions. StiU the implicity of 

Linde’e idea ia very appealing. INote the potentiaI V = l/2ma#’ works just as well 

(L. Jenw and 1. Moss, private communication); wccessful innation here requires 

that: (m/m+) c- IO-e/IN L 4 x lo-‘.] 

Induced Gravity InRation Consider the Cinzburg-Landau theoty of induced grav- 

ity baaed upon the effective Lagnngiat? 

t = -e4=Rf2 - 8&?#/2 - V(4), (72.1 

V(4) = A(4’ - S)‘/6 (726) 

whem c, A M dimenaionlew couplings, R L the Ricciacalar, and v I c-‘lt(6xG)-‘la 

The equation of motion for 4 b 

4 + 3H4 + 4’14 + [V’ - 4Vl4]f(l+ 6~) = 0 (73) 
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supplemented by 

Jfjl + @i/4)/H] = W4’)-‘1~/2 + V(4)l (74) 

Succedul inSationary scenarios can be constructed for 00 < v and for be B v(#u = 

the initial value of 0). so long as c 5 lo-’ and A cz O(lO-” - 10-‘e)*‘~*‘. The 
small dimensionless coupling constant required in the scalar potential is by now a 

very familiar requirement. 

The Compr~tiflcation nansition Ever increasing numbers of physicists are pur- 

suing the idea that uniticrtion of the forces may require additional spatial dirnen- 

sions (or as the optimist would e.ay, unification of the forcm is evidence for extra 

dimensiona!), e.g., Kalura-Klein theories, supergravity theories, and most recently, 

superstring theories. We know experimentally that these extra dimensions must be 

very small (a IO-“cm) and indeed in most theories the extra dimensions form a 

compact manifold of typical size 10-33cm or oo. If our apace-time i8 truly more 

than four dimensional, then we have yet another puzzle to add to our list of puz- 

sling cosmological facts-the extreme wuallne~ of the extra spatial dimensions, ~lome 

62 z 1og(10~scm/10-3’cm) or 80 orders of magnitude smaller than the three more 

familiar spatial dimensions. The possible use of inflation to explain this largeness 

problem haa not escaped the attention of researchers in this held. 

In thae theories there is a natural candidate for the ‘inflating field’ (which is &o 

automatically a gauge singlet)-the radius of the extra dimensions. If there are extra 
dimensions there must be some dynamics which determine their size (S beg), and in 

principle one should be able to construct an effective potential associated with the 

size of the extn dimensions 

v./, = V(4), (750) 

4 = W/be,). C-b) 
(lee Fig. 17). [The substitution 4 = In(b/bJ results in the usual kinetic term for 

4.1 ff the extra dimenaioua are initially (1 < 10-43~ec) displaced from their low 

temperature equilibrium valutdue to Bnite temperature corrections to V, initial 

conditions, or whatever (which seems very likely), then while they are evolving to 
their equilibrium value (0 = 0) the Universe will be endowed with a large potent4 

energy (and may very well inflate), thereby explaining the relative largeness of our 

three spatial dimentions as well a the usual cosmological puzzles. lntlationary mod- 

eb involving the compactification transition have ilready been investigated and the 

resulta are encouraging”. 
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few mp, 

Fig. 10-A potential for ‘chaotic inktion’. In Linde’r chaotic inflation, due to initial 
conditions, # is displaced from the minimum of its potential (0 = 0) and inflation 
occur as it evolve9 to 4 = 0. 

“ert ‘4’ 

t 

-\\ t‘- -- \ 
\ 

b #a=ln(b/bEP) 
\ 

Fig. IT-In theories with additional spatial dimensions there must be an effective 
potential associated with the sire of the extra dimer&na (ahown here schematically). 
One might expect that very early on (15 10 -“MC) the sise of the extra dimensiona 
is displaced from its equilibrium value (E b,,), due to haite temperatuturr corrections, 
initial conditions, or whatever. It b rpeculakd that idatim might occur aa tbeaire 
of the extra dimensions evolves to its quitibrium value, thereby solving both the 
usual cosmological puzzles and the pusrle of why the extra dimensions are aa small 
compared to our three familiar spatial dimensions. 
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I.-~.M Enda 

Inflation offen the possibility of making the present state of the Universe (on 

~a!- a large ad our Aubble ndius) insensitive to the initial data for the Universe. 

Since we stand Little hope of ever knowing what the initial data were this is a very 

attractive proposition. It has by no means yet achieved that lofty goal. There are a 
number of loose ends (and perhaps even a loose thread which may unravel the entire 

tapestry). I will briefly mention P few of them here. 

Fint, this bold conjecture of cosmic baldnevl has yet to be proven. That is, we are 

no rhe& near being able to show that the most generalset of initial data for Einstein’s 

equations eventually leads to inflation. [In fact M I mentioned earlier, for simplicity, 

it is usually assumed that the pre-inflationary Universe is a radiation-dominated 

FRW model--an assumption which moat certainly CPO. be re1axed.J However some 

progrns baa been made. It has been shown that homogeneous coamologies (with the 

exception of those that recollapx before they cao inflate) inevitably inRate*e~L’- 

that is, neither shear, anisotropy, nor negative spatial curvature & prevent new 

inflation from taking place” (th a was not the case with old inflation, which could t 

be prevented by the presence of large amounts of ahe&‘). The eRecta of #mall initial 

density inhomogeneities have also been studied u.89. They do not prevent intlation 

and such perturbations are merely expanded in size and R-enter the horizon with the 

same amplitude they would have in the absence of inflation. I should also add that 

Hartle and Hawking have boldly begun to study the possibility that the Universe, 

geometry and all, may be describable by a wavefunction which they hope may be 

able to eliminate the need for initial data at allso! 

Then there is the very important iwe of the validity of the semi-classical qua- 

tions of motion used to calculate the evolution of +4 and the resulting (and often 

troublesome) density perturbations. A number of potential difficulties (along with 

a number of red herrings) have been reviewed by the authon of ref. 91. The valid- 

ity of the wmi-classical approach has been addressed in P beautiful paper by Guth 

and Pi’O on the quantum mechanical aspects of inflation. And other authors have 

addressed diRerent aspects of this questionoa. Thus far, the validity of the semi- 

classical approach ban been confirmed (although the very formidable QFT problem 

in its full generality ha not been solved). In this regard, the early seminal work of 

LindePS and Vilenkin and Fad” has proven to be prescient: they suggatd that the 

semi-classical approach is valid whenever 

~~cta,.ic.t )* A4 = W/W(Jf~l”’ 
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Subrequent work hu confirmed their pioneering work. Although one might have 

worried that IpatiaI inhomogenettia would have worked havoc OD inEation, thal turna 

out not to be thecase. The rapid uption of the Universe constantly redshifts away 

spatial inhomogeneitiea in 4 and it ia because o! thii fact the quantum mechanical 

inhomogeneitio in 4 grow 10 slowly (a I’/‘). AU investigations done to date show 

inftalion to be very robust. In fact the work of Guth and Pia seam to indicate that 

second order phase transitions can led to i&&n ala- loog an the potential is 

aulfrciently flat. 

Al ptwent inflation doea have an Achilles heel or lwc--the small dimensionless 

coupling needed to successfully implement it, which explaina the de-&h of attractive 

model, and bur tack of understanding of the present smallness of the cosmological 

term. However, the potential payoff of inEation more than justifies continued study 

of thin very promising scenario. I mean paradigm! 

I would;Fke to call the reader’s attention to other reviews of lhe inEationary 

cosmology (Rena. 93-99), and to D. Liidley’a recent diwuwion of the history of the 

infiatiomry Universe’oo. I lhank my many collaborators an the topic of io6ation, 

especially Paul Steinhardt and Josh Friemm, the munerous colleagues with whom 

I have discussed and argued about inflation, especially Alan Guth, Rocky Kolb, 

and Keith Olive, and the many students at these lectures and other lectures, al1 of 

whom have contributed to improving my undentanding of inflation. I thank Barbara 

Ahlberg for her expert typing and patience. I thank the DOE (at Chicago and 

Fermilab), NASA (at Fermilab), and the Alfred P. Sloan Foundation for supporting 

my work. 
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